词条 | Structure and genome of HIV | ||||||||||||||||||||||||||||||||||
释义 |
The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983.[1][2] "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." [3] Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.[4][5] StructureThe complete sequence of the HIV-1 genome, extracted from infectious virions, has been solved to single-nucleotide resolution.[6] The HIV genome encodes a small number of viral proteins, invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries.[7] HIV is different in structure from other retroviruses. The HIV virion is ~100 nm in diameter. Its innermost region consists of a cone-shaped core that includes two copies of the (positive sense) ssRNA genome, the enzymes reverse transcriptase, integrase and protease, some minor proteins, and the major core protein. [8] The genome of human immunodeficiency virus (HIV) encodes 16 viral proteins playing essential roles during the HIV life cycle.[9] HIV-1 is composed of two copies of noncovalently linked, unspliced, positive-sense single-stranded RNA enclosed by a conical capsid composed of the viral protein p24, typical of lentiviruses.[10][11] The RNA component is 9749 nucleotides long[12][13] and bears a 5’ cap (Gppp), a 3’ poly(A) tail, and many open reading frames (ORFs).[14] Viral structural proteins are encoded by long ORFs, whereas smaller ORFs encode regulators of the viral life cycle: attachment, membrane fusion, replication, and assembly.[14] The single-strand RNA is tightly bound to p7 nucleocapsid proteins, late assembly protein p6, and enzymes essential to the development of the virion, such as reverse transcriptase and integrase. Lysine tRNA is the primer of the magnesium-dependent reverse transcriptase.[10] The nucleocapsid associates with the genomic RNA (one molecule per hexamer) and protects the RNA from digestion by nucleases. Also enclosed within the virion particle are Vif, Vpr, Nef, and viral protease. A matrix composed of an association of the viral protein p17 surrounds the capsid, ensuring the integrity of the virion particle. This is in turn surrounded by an envelope of host-cell origin. The envelope is formed when the capsid buds from the host cell, taking some of the host-cell membrane with it. The envelope includes the glycoproteins gp120 and gp41, which are responsible for binding to and entering the host cell. As the only proteins on the surface of the virus, the envelope glycoproteins (gp120 and gp41) are the major targets for HIV vaccine efforts.[15] Over half of the mass of the trimeric envelope spike is N-linked glycans. The density is high as the glycans shield underlying viral protein from neutralisation by antibodies. This is one of the most densely glycosylated molecules known and the density is sufficiently high to prevent the normal maturation process of glycans during biogenesis in the endoplasmic and Golgi apparatus.[16][17] The majority of the glycans are therefore stalled as immature 'high-mannose' glycans not normally present on secreted or cell surface human glycoproteins.[18] The unusual processing and high density means that almost all broadly neutralising antibodies that have so far been identified (from a subset of patients that have been infected for many months to years) bind to or, are adapted to cope with, these envelope glycans.[19] The molecular structure of the viral spike has now been determined by X-ray crystallography[20] and cryo-electron microscopy.[21] These advances in structural biology were made possible due to the development of stable recombinant forms of the viral spike by the introduction of an intersubunit disulphide bond and an isoleucine to proline mutation in gp41.[22] The so-called SOSIP trimers not only reproduce the antigenic properties of the native viral spike but also display the same degree of immature glycans as presented on the native virus.[23] Recombinant trimeric viral spikes are promising vaccine candidates as they display less non-neutralising epitopes than recombinant monomeric gp120 which act to suppress the immune response to target epitopes.[24] Genome organisationHIV has several major genes coding for structural proteins that are found in all retroviruses as well as several nonstructural ("accessory") genes unique to HIV.[27] The HIV genome contains nine genes that encode fifteen viral proteins.[25] These are synthesized as polyproteins which produce proteins for virion interior, called Gag, group specific antigen; the viral enzymes (Pol, polymerase) or the glycoproteins of the virion env (envelope).[26] In addition to these, HIV encodes for proteins which have certain regulatory and auxiliary functions as well.[26] HIV-1 has two important regulatory elements: Tat and Rev and few important accessory proteins such as Nef, Vpr, Vif and Vpu which are not essential for replication in certain tissues.[27] The gag gene provides the basic physical infrastructure of the virus, and pol provides the basic mechanism by which retroviruses reproduce, while the others help HIV to enter the host cell and enhance its reproduction. Though they may be altered by mutation, all of these genes except tev exist in all known variants of HIV; see Genetic variability of HIV. HIV employs a sophisticated system of differential RNA splicing to obtain nine different gene products from a less than 10kb genome.[28] HIV has a 9.2kb unspliced genomic transcript which encodes for gag and pol precursors; a singly spliced, 4.5 kb encoding for env, Vif, Vpr and Vpu and a multiply spliced, 2 kb mRNA encoding for Tat, Rev and Nef.[28]
Viral structural proteins
Essential regulatory elements
Accessory regulatory proteins
RNA secondary structure{{Infobox rfam| Name = HIV pol-1 stem loop | image = RF01418.png | width = 200 | caption = Predicted secondary structure of the HIV pol-1 stem loop | Symbol = pol | AltSymbols = | Rfam = RF01418 | miRBase = | miRBase_family = | RNA_type = Cis-reg | Tax_domain = | CAS_number = | EntrezGene = | HGNCid = | OMIM = | PDB = | RefSeq = | Chromosome = | Arm = | Band = | LocusSupplementaryData = }} Several conserved secondary structure elements have been identified within the HIV RNA genome. The 5'UTR structure consists of series of stem-loop structures connected by small linkers.[11] These stem-loops (5' to 3') include the trans-activation region (TAR) element, the 5' polyadenylation signal [poly(A)], the PBS, the DIS, the major SD and the ψ hairpin structure located within the 5' end of the genome and the HIV Rev response element (RRE) within the env gene.[11][32][33] Another RNA structure that has been identified is gag stem loop 3 (GSL3), thought to be involved in viral packaging.[34][35] RNA secondary structures have been proposed to affect the HIV life cycle by altering the function of HIV protease and reverse transcriptase, although not all elements identified have been assigned a function. An RNA secondary structure determined by SHAPE analysis has shown to contain three stem loops and is located between the HIV protease and reverse transcriptase genes. This cis regulatory RNA has been shown to be conserved throughout the HIV family and is thought to influence the viral life cycle.[36] V3 loopThe third variable loop or V3 loop is a part or region of the Human Immunodeficiency Virus. The V3 loop of the viron's envelope glycoprotein, gp120, allows it to infect human immune cells by binding to a cytokine receptor on the target human immune cell, such as a CCR5 cell or CXCR4 cell, depending on the strain of HIV.[37] The envelope glycoprotein (Env)gp 120/41 is essential for HIV-1 entry into cells. Env serves as a molecular target of a medicine treating individuals with HIV-1 infection, and a source of immunogen to develop AIDS vaccine. However, the structure of the functional Env trimer has remained elusive.[38] See also
References1. ^{{cite journal |author=Barré-Sinoussi F |title=Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) |journal=Science |volume=220 |issue=4599 |pages=868–71 |date=May 1983 |pmid=6189183 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=6189183 |doi=10.1126/science.6189183 |bibcode=1983Sci...220..868B |name-list-format=vanc|author2=Chermann JC |author3=Rey F |display-authors=3 |last4=Nugeyre |first4=M. |last5=Chamaret |first5=S |last6=Gruest |first6=J |last7=Dauguet |first7=C |last8=Axler-Blin |first8=C |last9=Vezinet-Brun |first9=F}} 2. ^{{cite journal |author=Gallo RC |title=Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS) |journal=Science |volume=220 |issue=4599 |pages=865–7 |date=May 1983 |pmid=6601823 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=6601823 |doi=10.1126/science.6601823 |name-list-format=vanc|author2=Sarin PS |author3=Gelmann EP |display-authors=3 |last4=Robert-Guroff |first4=M |last5=Richardson |first5=E |last6=Kalyanaraman |first6=V. |last7=Mann |first7=D |last8=Sidhu |first8=G. |last9=Stahl |first9=R.|bibcode = 1983Sci...220..865G }} 3. ^Churi, C., & Ross, M. W. (2015). Hiv/Aids. In P. Whelehan, & A. Bolin (Eds.), The international encyclopedia of human sexuality. Hoboken, NJ: Wiley. Retrieved from http://vlib.excelsior.edu/login?url=https://search.credoreference.com/content/entry/wileyhs/hiv_aids/0?institutionId=1649 4. ^{{cite journal|title=Pneumocycstis Pneumonia – Los Angeles|journal=Morbidity and Mortality Weekly Report|date=1981-06-05|last=Centers for Disease Control and Prevention|volume=30|issue=21|pages=250–2|url=https://www.cdc.gov/hiv/resources/reports/mmwr/pdf/mmwr05jun81.pdf|format=PDF|pmid=6265753}}{{Dead link|date=August 2018 |bot=InternetArchiveBot |fix-attempted=yes }} 5. ^{{cite journal |title=Kaposi's Sarcoma and Pneumocycstis Pneumonia Among Homosexual Men – New York City and California |journal=Morbidity and Mortality Weekly Report |date=1981-07-04 |last=Centers for Disease Control and Prevention |volume=30 |issue=25 |pages=305–8 |url=https://www.cdc.gov/hiv/resources/reports/mmwr/pdf/mmwr04jul81.pdf |format=PDF |pmid=6789108 |access-date=2017-09-15 |archive-url=https://web.archive.org/web/20121022231153/http://www.cdc.gov/hiv/resources/reports/mmwr/pdf/mmwr04jul81.pdf |archive-date=2012-10-22 |dead-url=yes |df= }} 6. ^{{cite journal |vauthors=Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Swanstrom R, Burch CL, Weeks KM |title=Architecture and Secondary Structure of an Entire HIV-1 RNA Genome |journal=Nature |volume=460 |issue=7256 |pages=711–6 |year=2009 |pmid=19661910 |doi=10.1038/nature08237 |pmc=2724670|bibcode = 2009Natur.460..711W }} 7. ^{{Cite journal|last=Li|first=Guangdi|last2=Clercq|first2=Erik De|date=September 2016|title=HIV Genome-Wide Protein Associations: a Review of 30 Years of Research|url=https://mmbr.asm.org/content/80/3/679|journal=Microbiol. Mol. Biol. Rev.|language=en|volume=80|issue=3|pages=679–731|doi=10.1128/MMBR.00065-15|issn=1092-2172|pmc=4981665|pmid=27357278|via=}} 8. ^Hiv. (2006). In P. Singleton, & D. Sainsbury, Dictionary of microbiology & molecular biology (3rd ed.). Hoboken, NJ: Wiley. Retrieved from http://vlib.excelsior.edu/login?url=https://search.credoreference.com/content/entry/wileymicrob/hiv/0?institutionId=1649 9. ^{{Cite journal|last=Li|first=Guangdi|last2=Clercq|first2=Erik De|date=2016-09-01|title=HIV Genome-Wide Protein Associations: a Review of 30 Years of Research|url=https://mmbr.asm.org/content/80/3/679|journal=Microbiol. Mol. Biol. Rev.|language=en|volume=80|issue=3|pages=679–731|doi=10.1128/MMBR.00065-15|issn=1092-2172|pmc=4981665|pmid=27357278|via=}} 10. ^1 2 3 4 5 6 {{Cite encyclopedia|year=1999|title=Human Immunodeficiency Viruses (Retroviridae)|encyclopedia=Encyclopedia of Virology|last=Montagnier|first=Luc|date=|edition=2nd|pages=763–774}} 11. ^1 2 {{cite journal|pmid=21762803|year=2011|last1=Lu|first1=K|last2=Heng|first2=X|last3=Summers|first3=MF|title=Structural determinants and mechanism of HIV-1 genome packaging|volume=410|issue=4|pages=609–33|doi=10.1016/j.jmb.2011.04.029|pmc=3139105|journal=Journal of Molecular Biology}} 12. ^{{cite journal |author=Wain-Hobson S |title=Nucleotide sequence of the AIDS virus, LAV |journal=Cell |volume=40 |issue=1 |pages=9–17 |year=1985 |pmid=2981635 |doi=10.1016/0092-8674(85)90303-4 |name-list-format=vanc|author2=Sonigo P |author3=Danos O |display-authors=3 |last4=Cole |first4=S |last5=Alizon |first5=M}} 13. ^{{cite journal |author=Ratner L |title=Complete nucleotide sequence of the AIDS virus, HTLV-III |journal=Nature |volume=313 |issue=6000 |pages=277–84 |year=1985 |pmid=2578615 |doi=10.1038/313277a0 |name-list-format=vanc|author2=Haseltine W |author3=Patarca R |display-authors=3 |last4=Livak |first4=Kenneth J. |last5=Starcich |first5=Bruno |last6=Josephs |first6=Steven F. |last7=Doran |first7=Ellen R. |last8=Rafalski |first8=J. Antoni |last9=Whitehorn |first9=Erik A.|bibcode = 1985Natur.313..277R }} 14. ^1 {{Cite encyclopedia|year=2002|title=HIV (Human Immunodeficiency Virus)|encyclopedia=Encyclopedia of Cancer|last=Castelli|first=Joann C.|date=|edition=2nd|volume=2|page=407–415|last2=Levy|first2=A.}} 15. ^{{cite press release | author=National Institute of Health | title=Crystal structure of key HIV protein reveals new prevention, treatment targets | date=June 17, 1998 |url=http://www3.niaid.nih.gov/news/newsreleases/1998/hivprotein.htm | accessdate = September 14, 2006 |archiveurl=https://web.archive.org/web/20060219112450/http://www3.niaid.nih.gov/news/newsreleases/1998/hivprotein.htm |archivedate=February 19, 2006}} 16. ^{{Cite journal|last=Behrens|first=Anna-Janina|last2=Vasiljevic|first2=Snezana|last3=Pritchard|first3=Laura K.|last4=Harvey|first4=David J.|last5=Andev|first5=Rajinder S.|last6=Krumm|first6=Stefanie A.|last7=Struwe|first7=Weston B.|last8=Cupo|first8=Albert|last9=Kumar|first9=Abhinav|date=2016-03-10|title=Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein|url=http://www.cell.com/article/S2211124716301796/abstract|journal=Cell Reports|language=English|volume=14|issue=11|doi=10.1016/j.celrep.2016.02.058|issn=2211-1247|pmid=26972002|pmc=4805854|pages=2695–706}} 17. ^{{Cite journal|last=Pritchard|first=Laura K.|last2=Spencer|first2=Daniel I. R.|last3=Royle|first3=Louise|last4=Bonomelli|first4=Camille|last5=Seabright|first5=Gemma E.|last6=Behrens|first6=Anna-Janina|last7=Kulp|first7=Daniel W.|last8=Menis|first8=Sergey|last9=Krumm|first9=Stefanie A.|date=2015-06-24|title=Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies|url=http://www.nature.com/ncomms/2015/150624/ncomms8479/full/ncomms8479.html|journal=Nature Communications|language=en|volume=6|pages=7479|doi=10.1038/ncomms8479|pmc=4500839|pmid=26105115|bibcode=2015NatCo...6E7479P}} 18. ^{{Cite journal|last=Pritchard|first=Laura K.|last2=Harvey|first2=David J.|last3=Bonomelli|first3=Camille|last4=Crispin|first4=Max|last5=Doores|first5=Katie J.|date=2015-09-01|title=Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope|url=http://jvi.asm.org/content/89/17/8932|journal=Journal of Virology|language=en|volume=89|issue=17|pages=8932–8944|doi=10.1128/JVI.01190-15|issn=0022-538X|pmc=4524065|pmid=26085151}} 19. ^{{Cite journal|last=Crispin|first=Max|last2=Doores|first2=Katie J|date=2015-04-01|title=Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design|url=http://www.sciencedirect.com/science/article/pii/S1879625715000267|journal=Current Opinion in Virology|series=Viral pathogenesis • Preventive and therapeutic vaccines|volume=11|pages=63–69|doi=10.1016/j.coviro.2015.02.002|pmid=25747313|pmc=4827424}} 20. ^{{Cite journal|last=Julien|first=Jean-Philippe|last2=Cupo|first2=Albert|last3=Sok|first3=Devin|last4=Stanfield|first4=Robyn L.|last5=Lyumkis|first5=Dmitry|last6=Deller|first6=Marc C.|last7=Klasse|first7=Per-Johan|last8=Burton|first8=Dennis R.|last9=Sanders|first9=Rogier W.|date=2013-12-20|title=Crystal structure of a soluble cleaved HIV-1 envelope trimer|journal=Science|volume=342|issue=6165|pages=1477–1483|doi=10.1126/science.1245625|issn=1095-9203|pmc=3886632|pmid=24179159|bibcode=2013Sci...342.1477J}} 21. ^{{Cite journal|last=Lyumkis|first=Dmitry|last2=Julien|first2=Jean-Philippe|last3=de Val|first3=Natalia|last4=Cupo|first4=Albert|last5=Potter|first5=Clinton S.|last6=Klasse|first6=Per-Johan|last7=Burton|first7=Dennis R.|last8=Sanders|first8=Rogier W.|last9=Moore|first9=John P.|date=2013-12-20|title=Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer|journal=Science|volume=342|issue=6165|pages=1484–1490|doi=10.1126/science.1245627|issn=1095-9203|pmc=3954647|pmid=24179160|bibcode=2013Sci...342.1484L}} 22. ^{{Cite journal|last=Sanders|first=Rogier W.|last2=Derking|first2=Ronald|last3=Cupo|first3=Albert|last4=Julien|first4=Jean-Philippe|last5=Yasmeen|first5=Anila|last6=de Val|first6=Natalia|last7=Kim|first7=Helen J.|last8=Blattner|first8=Claudia|last9=de la Peña|first9=Alba Torrents|date=2013-09-01|title=A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies|journal=PLoS Pathogens|volume=9|issue=9|pages=e1003618|doi=10.1371/journal.ppat.1003618|issn=1553-7374|pmc=3777863|pmid=24068931}} 23. ^{{Cite journal|last=Pritchard|first=Laura K.|last2=Vasiljevic|first2=Snezana|last3=Ozorowski|first3=Gabriel|last4=Seabright|first4=Gemma E.|last5=Cupo|first5=Albert|last6=Ringe|first6=Rajesh|last7=Kim|first7=Helen J.|last8=Sanders|first8=Rogier W.|last9=Doores|first9=Katie J.|date=2015-06-16|title=Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers|journal=Cell Reports|volume=11|issue=10|pages=1604–1613|doi=10.1016/j.celrep.2015.05.017|issn=2211-1247|pmc=4555872|pmid=26051934}} 24. ^{{Cite journal|last=de Taeye|first=Steven W.|last2=Ozorowski|first2=Gabriel|last3=Torrents de la Peña|first3=Alba|last4=Guttman|first4=Miklos|last5=Julien|first5=Jean-Philippe|last6=van den Kerkhof|first6=Tom L. G. M.|last7=Burger|first7=Judith A.|last8=Pritchard|first8=Laura K.|last9=Pugach|first9=Pavel|date=2015-12-17|title=Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes|journal=Cell|volume=163|issue=7|pages=1702–1715|doi=10.1016/j.cell.2015.11.056|issn=1097-4172|pmc=4732737|pmid=26687358}} 25. ^{{Cite journal|last=Li|first=Guangdi|last2=Piampongsant|first2=Supinya|last3=Faria|first3=Nuno Rodrigues|last4=Voet|first4=Arnout|last5=Pineda-Peña|first5=Andrea-Clemencia|last6=Khouri|first6=Ricardo|last7=Lemey|first7=Philippe|last8=Vandamme|first8=Anne-Mieke|last9=Theys|first9=Kristof|date=2015-02-15|title=An integrated map of HIV genome-wide variation from a population perspective|url=http://www.retrovirology.com/content/12/1/18|journal=Retrovirology|language=En|volume=12|issue=1|pages=18|doi=10.1186/s12977-015-0148-6|issn=1742-4690|pmc=4358901|pmid=25808207|via=}} 26. ^1 2 3 4 5 6 7 8 9 10 11 {{Cite encyclopedia|year=2008|title=Human Immunodeficiency Viruses: Molecular Biology|encyclopedia=Encyclopedia of Virology|last=Votteler|first=J.|date=|edition=3rd|pages=517–525|last2=Schubert|first2=U.}} 27. ^{{Cite encyclopedia|year=2008|title=Human Immunodeficiency Viruses: Molecular Biology|encyclopedia=Encyclopedia of Virology|last=Votteler|first=J.|date=|edition=3rd|pages=517–525|last2=Schubert|first2=U.}} 28. ^1 {{cite journal | author = Feinberg Mark B, Greene Warner C | year = 1992 | title = Molecular Insights into human immunodeficiency virus type1 pathogenesis | url = | journal = Current Opinion in Immunology | volume = 4 | issue = 4| pages = 466–474 | doi=10.1016/s0952-7915(06)80041-5}} 29. ^1 {{cite journal | author = King Steven R | year = 1994 | title = HIV: Virology and Mechanisms of disease | url = | journal = Annals of Emergency Medicine | volume = 24 | issue = 3| pages = 443–449 | doi=10.1016/s0196-0644(94)70181-4}} 30. ^1 2 {{Cite journal|last=Mushahwar|first=Isa K.|date=2007|title=Human Immunodeficiency Viruses: Molecular Virology, pathogenesis, diagnosis and treatment|url=|journal=Perspectives in Medical Virology|volume=13|pages=75–87|via=}} 31. ^{{cite journal|last=Benko|first=DM|author2=Schwartz, S |author3=Pavlakis, GN |author4= Felber, BK |title=A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins.|journal=Journal of Virology|date=June 1990|volume=64|issue=6|pages=2505–18|pmid=2186172 |pmc=249426}} 32. ^{{cite journal |author=Berkhout B |title=Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis |journal=Nucleic Acids Res. |volume=20 |issue=1 |pages=27–31 |date=January 1992 |pmid=1738599 |pmc=310321 |doi= 10.1093/nar/20.1.27|url=}} 33. ^{{cite journal |vauthors=Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R |title=In vitro evidence for a long range pseudoknot in the 5'-untranslated and matrix coding regions of HIV-1 genomic RNA |journal=J. Biol. Chem. |volume=277 |issue=8 |pages=5995–6004 |date=February 2002 |pmid=11744696 |doi=10.1074/jbc.M108972200 |url=}} 34. ^{{cite journal | last = Damgaard | first = CK |author2=Andersen ES |author3=Knudsen B |author4=Gorodkin J |author5=Kjems J | year = 2004 | title = RNA interactions in the 5' region of the HIV-1 genome | journal = J Mol Biol | volume = 336 | pages = 369–379 | pmid = 14757051 | doi = 10.1016/j.jmb.2003.12.010 | issue = 2}} 35. ^{{cite journal | last = Rong | first = L |author2=Russell RS |author3=Hu J |author4=Laughrea M |author5=Wainberg MA |author6=Liang C | year = 2003 | title = Deletion of stem-loop 3 is compensated by second-site mutations within the Gag protein of human immunodeficiency virus type 1 | journal = Virology | volume = 314 | pages = 221–228 | pmid = 14517075 | doi = 10.1016/S0042-6822(03)00405-7 | issue = 1}} 36. ^{{cite journal |vauthors=Wang Q, Barr I, Guo F, Lee C |title=Evidence of a novel RNA secondary structurein the coding region of HIV-1 pol gene |journal=RNA |volume=14 |issue=12 |pages=2478–88 |date=December 2008 |pmid=18974280 |pmc=2590956 |doi=10.1261/rna.1252608 |url=}} 37. ^{{Cite journal|last=|first=|date=|title=The interactions of the gp120 V3 loop of different HIV-1 strains with the potent anti-HIV human monoclonal antibody 447-52D|url=http://www.weizmann.ac.il/sb/faculty_pages/Anglister/antibody.html|dead-url=yes|journal=|volume=|pages=|via=|access-date=2017-04-18|archive-url=https://web.archive.org/web/20070718092045/http://www.weizmann.ac.il/sb/faculty_pages/Anglister/antibody.html|archive-date=2007-07-18|df=}} 38. ^{{Cite journal|last=Takeda|first=Satoshi|last2=Takizawa|first2=Mari|last3=Miyauchi|first3=Kosuke|last4=Urano|first4=Emiko|last5=Fujino|first5=Masayuki|last6=Murakami|first6=Toshio|last7=Murakami|first7=Tsutomu|last8=Komano|first8=Jun|date=June 2016|title=Conformational properties of the third variable loop of HIV-1AD8 envelope glycoprotein in the liganded conditions|url=http://linkinghub.elsevier.com/retrieve/pii/S0006291X16307434|journal=Biochemical and Biophysical Research Communications|volume=475|issue=1|pages=113–118|doi=10.1016/j.bbrc.2016.05.051|pmid=27178216|issn=0006-291X|via=}} External links{{Commonscat}}
1 : HIV/AIDS |
||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。