词条 | Structure–activity relationship |
释义 |
The analysis of SAR enables the determination of the chemical group responsible for evoking a target biological effect in the organism. This allows modification of the effect or the potency of a bioactive compound (typically a drug) by changing its chemical structure.[3] Medicinal chemists use the techniques of chemical synthesis to insert new chemical groups into the biomedical compound and test the modifications for their biological effects.[4][5][6][7][8][9] This method was refined to build mathematical relationships between the chemical structure and the biological activity, known as quantitative structure–activity relationships (QSAR). A related term is structure affinity relationship (SAFIR). Structure-biodegradability relationshipThe large number of synthetic organic chemicals currently in production presents a huge challenge for timely collection of detailed environmental data on each compound. The concept of structure biodegradability relationships (SBR) has been applied to explain variability in persistence among organic chemicals in the environment. Early attempts generally consisted of examining the degradation of a homologous series of structurally related compounds under identical conditions with a complex "universal" inoculum, typically derived from numerous sources.[10] This approach revealed that the nature and positions of substituents affected the apparent biodegradability of several chemical classes, with resulting general themes, such as halogens generally conferring persistence under aerobic conditions.[11] Subsequently, more quantitative approaches have been developed using principles of QSAR and often accounting for the role of sorption (bioavailability) in chemical fate.[12] See also
References1. ^{{cite journal|last=Sims|first=Gerald|author2=Sommers |title=Degradation of pyridine derivatives in soil|journal=J. Environmental Quality|year=1985|volume=14|pages=580–584|accessdate=2013-04-04|doi=10.2134/jeq1985.00472425001400040022x}} 2. ^{{cite journal|last=Crum-Brown|first=A|author2=Fraser |title=The connection of chemical constitution and physiological action|journal=Trans R Soc Edinb |year=1865|volume=25|pages=1968–69}} 3. ^{{Cite journal|last=Srinivasan|first=Bharath|last2=Tonddast-Navaei|first2=Sam|last3=Skolnick|first3=Jeffrey|date=October 2015|title=Ligand binding studies, preliminary structure–activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase|url=https://linkinghub.elsevier.com/retrieve/pii/S0223523415302051|journal=European Journal of Medicinal Chemistry|volume=103|pages=600–614|doi=10.1016/j.ejmech.2015.08.021|pmc=4610388|pmid=26414808}} 4. ^{{Cite journal|last=Nagamallu|first=Renuka|last2=Srinivasan|first2=Bharath|last3=Ningappa|first3=Mylarappa B.|last4=Kariyappa|first4=Ajay Kumar|date=January 2016|title=Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities|url=https://linkinghub.elsevier.com/retrieve/pii/S0960894X1530247X|journal=Bioorganic & Medicinal Chemistry Letters|volume=26|issue=2|pages=690–694|doi=10.1016/j.bmcl.2015.11.038}} 5. ^{{Cite journal|last=Raghavendra|first=Kanchipura Ramachandrappa|last2=Renuka|first2=Nagamallu|last3=Kameshwar|first3=Vivek H.|last4=Srinivasan|first4=Bharath|last5=Ajay Kumar|first5=Kariyappa|last6=Shashikanth|first6=Sheena|date=August 2016|title=Synthesis of lignan conjugates via cyclopropanation: Antimicrobial and antioxidant studies|url=http://linkinghub.elsevier.com/retrieve/pii/S0960894X16306163|journal=Bioorganic & Medicinal Chemistry Letters|volume=26|issue=15|pages=3621–3625|doi=10.1016/j.bmcl.2016.06.005}} 6. ^{{Cite journal|last=Prabhudeva|first=Malledevarapura Gurumurthy|last2=Bharath|first2=Srinivasan|last3=Kumar|first3=Achutha Dileep|last4=Naveen|first4=Shivalingegowda|last5=Lokanath|first5=Neratur Krishnappagowda|last6=Mylarappa|first6=Bantaganahalli Ningappa|last7=Kumar|first7=Kariyappa Ajay|date=August 2017|title=Design and environmentally benign synthesis of novel thiophene appended pyrazole analogues as anti-inflammatory and radical scavenging agents: Crystallographic , in silico modeling, docking and SAR characterization|url=https://linkinghub.elsevier.com/retrieve/pii/S0045206817303607|journal=Bioorganic Chemistry|volume=73|pages=109–120|doi=10.1016/j.bioorg.2017.06.004}} 7. ^{{Cite journal|last=Lokeshwari|first=Devirammanahalli Mahadevaswamy|last2=Achutha|first2=Dileep Kumar|last3=Srinivasan|first3=Bharath|last4=Shivalingegowda|first4=Naveen|last5=Krishnappagowda|first5=Lokanath Neratur|last6=Kariyappa|first6=Ajay Kumar|date=August 2017|title=Synthesis of novel 2-pyrazoline analogues with potent anti-inflammatory effect mediated by inhibition of phospholipase A2: Crystallographic, in silico docking and QSAR analysis|url=https://linkinghub.elsevier.com/retrieve/pii/S0960894X17306650|journal=Bioorganic & Medicinal Chemistry Letters|volume=27|issue=16|pages=3806–3811|doi=10.1016/j.bmcl.2017.06.063}} 8. ^{{Cite journal|last=Lokeshwari|first=Devirammanahalli Mahadevaswamy|last2=Rekha|first2=Nanjappagowda Dharmappa|last3=Srinivasan|first3=Bharath|last4=Vivek|first4=Hamse Kameshwar|last5=Kariyappa|first5=Ajay Kumar|date=July 2017|title=Design, synthesis of novel furan appended benzothiazepine derivatives and in vitro biological evaluation as potent VRV-PL-8a and H+/K+ ATPase inhibitors|url=https://linkinghub.elsevier.com/retrieve/pii/S0960894X17305474|journal=Bioorganic & Medicinal Chemistry Letters|volume=27|issue=14|pages=3048–3054|doi=10.1016/j.bmcl.2017.05.059}} 9. ^{{Cite journal|last=Dileep Kumar|first=Achutha|last2=Bharath|first2=Srinivasan|last3=Dharmappa|first3=Rekha N.|last4=Naveen|first4=Shivalingegowda|last5=Lokanath|first5=Neratur Krishnappagowda|last6=Ajay Kumar|first6=Kariyappa|date=September 2018|title=Design, synthesis and spectroscopic and crystallographic characterisation of novel functionalized pyrazole derivatives: biological evaluation for their cytotoxic, angiogenic and antioxidant activities|url=http://link.springer.com/10.1007/s11164-018-3445-6|journal=Research on Chemical Intermediates|volume=44|issue=9|pages=5635–5652|doi=10.1007/s11164-018-3445-6|issn=0922-6168}} 10. ^{{cite journal|last=Sims|first=Gerald|author2=Sommers |title=Biodegradation of pyridine derivatives in soil suspensions|journal=Environmental Toxicology and Chemistry |year=1986|volume=5|issue=6|pages=503–509|doi=10.1002/etc.5620050601}} 11. ^{{cite journal|last=Alexander|first=Martin|author2=Lustigman |title=Effect of chemical structure on microbial degradation of substituted benzenes|journal=J. Agric. Food Chem.|year=1966|volume=14|issue=4|pages=410–413|doi=10.1021/jf60146a022}} 12. ^{{cite journal|last=Mani|first=S.V. |author2=D.W. Connell |author3=R.D. Braddock|title=Structure activity relationships for the prediction of biodegradability of environmental pollutants.|journal=Critical Reviews in Environmental Control|year=1991|volume=21|issue=3,4 |pages=217–236|doi=10.1080/10643389109388416}} External links
1 : Medicinal chemistry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。