请输入您要查询的百科知识:

 

词条 Sylvester's determinant identity
释义

  1. Proof

  2. Applications

  3. References

{{Expert needed|mathematics|reason="The name of the theorem is either wrong or ambiguous"|date=September 2017}}

In matrix theory, Sylvester's determinant identity is an identity useful for evaluating certain types of determinants. It is named after James Joseph Sylvester, who stated this identity without proof in 1851.[1]

The identity states that if {{math|A}} and {{math|B}} are matrices of size {{math|m × n}} and {{math|n × m}} respectively, then

where {{math|Ik}} is the identity matrix of order {{math|k}}.[2][3]

It is closely related to the Matrix determinant lemma and its generalization. It is the determinant analogue of the Woodbury matrix identity for matrix inverses.

Proof

The identity may be proved as follows.[4] Let {{math|M}} be a matrix comprising the four blocks {{math|Im}}, {{math|−A}}, {{math|B}}, and {{math|In}}:

.

Because {{math|Im}} is invertible, the formula for the determinant of a block matrix gives

.

Because {{math|In}} is invertible, the formula for the determinant of a block matrix gives

.

Thus

.

Applications

This identify is useful in developing a Bayes estimator for multivariate Gaussian distributions.

The identity also finds applications in random matrix theory by relating determinants of large matrices to determinants of smaller ones.[5]

References

1. ^{{cite journal | last = Sylvester | first = James Joseph | title = On the relation between the minor determinants of linearly equivalent quadratic functions | journal = Philosophical Magazine | volume = 1 | year = 1851 | pages = 295–305}}
Cited in {{Cite journal | last1 = Akritas | first1 = A. G. | last2 = Akritas | first2 = E. K. | last3 = Malaschonok | first3 = G. I. | doi = 10.1016/S0378-4754(96)00035-3 | title = Various proofs of Sylvester's (determinant) identity | journal = Mathematics and Computers in Simulation | volume = 42 | issue = 4–6 | page = 585 | year = 1996 | pmid = | pmc = }}
2. ^{{cite book |author=Harville, David A. |title=Matrix algebra from a statistician's perspective |publisher=Springer |location=Berlin |year=2008 |pages= |isbn=0-387-78356-3}} page 416
3. ^{{cite web |last=Weisstein |first=Eric W. |title=Sylvester's Determinant Identity |publisher=MathWorld--A Wolfram Web Resource |url=http://mathworld.wolfram.com/SylvestersDeterminantIdentity.html |accessdate=2012-03-03}}
4. ^{{citation|title=An Introduction to Grids, Graphs, and Networks|first=C.|last=Pozrikidis|publisher=Oxford University Press|year=2014|isbn=9780199996735|page=271|url=https://books.google.com/books?id=Ws_RAgAAQBAJ&pg=PA271}}
5. ^{{cite web|url=http://terrytao.wordpress.com/2010/12/17/the-mesoscopic-structure-of-gue-eigenvalues/ |title=The mesoscopic structure of GUE eigenvalues | What's new |website=Terrytao.wordpress.com |date= |accessdate=2016-01-16}}
{{DEFAULTSORT:Sylvester's Determinant Identity}}

4 : Determinants|Matrix theory|Linear algebra|Theorems in algebra

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 4:01:13