请输入您要查询的百科知识:

 

词条 F-distribution
释义

  1. Definition

  2. Characterization

  3. {{anchor|Properties}} Properties and related distributions

  4. See also

  5. References

  6. External links

{{About|the central F-distribution|the generalized distribution|noncentral F-distribution|}}{{distinguish|text=F-statistics as used in population genetics}}{{DISPLAYTITLE:F-distribution}}{{Probability distribution
| name = Fisher–Snedecor
| type = density
| pdf_image = |
| cdf_image = |
| parameters = d1, d2 > 0 deg. of freedom|
| support = if , otherwise |
| pdf =
| cdf =
| mean =
for d2 > 2
| median =
| mode =
for d1 > 2
| variance =
for d2 > 4
| skewness =
for d2 > 6
| kurtosis = see text
| entropy =

[1]
| mgf = does not exist, raw moments defined in text and in [2][3]
| char = see text
}}

In probability theory and statistics, the F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA), e.g., F-test.[2][3][4][5]

Definition

If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability density function (pdf) for X is given by

for real x > 0. Here is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.

The cumulative distribution function is

where I is the regularized incomplete beta function.

The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess kurtosis is

The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to [6]

The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind.

The characteristic function is listed incorrectly in many standard references (e.g.,[3]). The correct expression [7] is

where U(a, b, z) is the confluent hypergeometric function of the second kind.

Characterization

A random variate of the F-distribution with parameters d1 and d2 arises as the ratio of two appropriately scaled chi-squared variates:[8]

where

  • U1 and U2 have chi-squared distributions with d1 and d2 degrees of freedom respectively, and
  • U1 and U2 are independent.

In instances where the F-distribution is used, for example in the analysis of variance, independence of U1 and U2 might be demonstrated by applying Cochran's theorem.

Equivalently, the random variable of the F-distribution may also be written

where s12 and s22 are the sums of squares S12 and S22 from two normal processes with variances σ12 and σ22 divided by the corresponding number of χ2 degrees of freedom, d1 and d2 respectively : and .{{discuss|Inconsistent.2C_or_at_least_confusing.2C_representation_in_terms_of_normal_variables}}{{citation needed|date=March 2014}}

In a frequentist context, a scaled F-distribution therefore gives the probability p(s12/s22 | σ12, σ22), with the F-distribution itself, without any scaling, applying where σ12 is being taken equal to σ22. This is the context in which the F-distribution most generally appears in F-tests: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.

The quantity X has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant Jeffreys prior is taken for the prior probabilities of σ12 and σ22.[9] In this context, a scaled F-distribution thus gives the posterior probability p2212|s12, s22), where now the observed sums s12 and s22 are what are taken as known.

{{anchor|Properties}} Properties and related distributions

  • If and are independent, then
  • If are independent, then
  • If (Beta distribution) then
  • Equivalently, if X ~ F(d1, d2), then .
  • If X ~ F(d1, d2), then has a beta prime distribution: .
  • If X ~ F(d1, d2) then has the chi-squared distribution
  • F(d1, d2) is equivalent to the scaled Hotelling's T-squared distribution .
  • If X ~ F(d1, d2) then X−1 ~ F(d2, d1).
  • If X ~ t(n) — Student's t-distribution — then:

  • F-distribution is a special case of type 6 Pearson distribution
  • If X and Y are independent, with X, Y ~ Laplace(μ, b) then

  • If X ~ F(n, m) then (Fisher's z-distribution)
  • The noncentral F-distribution simplifies to the F-distribution if λ = 0.
  • The doubly noncentral F-distribution simplifies to the F-distribution if
  • If is the quantile p for X ~ F(d1, d2) and is the quantile 1 − p for Y ~ F(d2, d1), then

See also

{{Colbegin}}
  • Beta prime distribution
  • Chi-squared distribution
  • Chow test
  • Gamma distribution
  • Hotelling's T-squared distribution
  • Wilks' lambda distribution
  • Wishart distribution
{{Colend}}

References

1. ^{{Cite journal|last=Lazo |first=A.V. |last2=Rathie |first2=P. |title=On the entropy of continuous probability distributions |journal=IEEE Transactions on Information Theory |volume=24 |number=1 |pages=120–122 |year=1978 |publisher=IEEE}}
2. ^{{cite book | last = Johnson | first = Norman Lloyd |author2=Samuel Kotz |author3=N. Balakrishnan | title = Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27) | publisher = Wiley | year = 1995 | isbn = 0-471-58494-0}}
3. ^{{Abramowitz_Stegun_ref|26|946}}
4. ^NIST (2006). Engineering Statistics Handbook – F Distribution
5. ^{{cite book | last = Mood | first = Alexander |author2=Franklin A. Graybill |author3=Duane C. Boes | title = Introduction to the Theory of Statistics (Third Edition, pp. 246–249) | publisher = McGraw-Hill | year = 1974 | isbn = 0-07-042864-6}}
6. ^{{cite web | last1 = Taboga | first1 = Marco | url = http://www.statlect.com/F_distribution.htm | title = The F distribution}}
7. ^Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," Biometrika, 69: 261–264 {{jstor|2335882}}
8. ^M.H. DeGroot (1986), Probability and Statistics (2nd Ed), Addison-Wesley. {{ISBN|0-201-11366-X}}, p. 500
9. ^G. E. P. Box and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley. p. 110

External links

  • Table of critical values of the F-distribution
  • Earliest Uses of Some of the Words of Mathematics: entry on F-distribution contains a brief history
  • Free calculator for F-testing
{{ProbDistributions|continuous-semi-infinite}}{{DEFAULTSORT:F-distribution}}

2 : Continuous distributions|Analysis of variance

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/18 18:16:06