请输入您要查询的百科知识:

 

词条 Tetragonal disphenoid honeycomb
释义

  1. Geometry

  2. Hexakis cubic honeycomb

      Related honeycombs  

  3. Square bipyramidal honeycomb

      Related honeycombs  

  4. Phyllic disphenoidal honeycomb

      Related honeycombs  

  5. See also

  6. References

Tetragonal disphenoid tetrahedral honeycomb
Typeconvex uniform honeycomb dual
Coxeter-Dynkin diagramnode|4|node_f1|3|node_f1|4|node}}
Cell type
Tetragonal disphenoid
Face typesisosceles triangle {3}
Vertex figuretetrakis hexahedron
{{CDD>node|4|node_f1|3|node_f1}}
Space group3}}m (229)
Symmetry4,3,4}}
Coxeter group, [4,3,4]
DualBitruncated cubic honeycomb
Propertiescell-transitive, face-transitive, vertex-transitive

The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton Conway calls it an oblate tetrahedrille or shortened to obtetrahedrille.[1]

A cell can be seen as 1/12 of a translational cube, with its vertices centered on two faces and two edges. Four of its edges belong to 6 cells, and two edges belong to 4 cells.

The tetrahedral disphenoid honeycomb is the dual of the uniform bitruncated cubic honeycomb.

Its vertices form the A{{sup sub|*|3}} / D{{sup sub|*|3}} lattice, which is also known as the Body-Centered Cubic lattice.

Geometry

This honeycomb's vertex figure is a tetrakis cube: 24 disphenoids meet at each vertex. The union of these 24 disphenoids forms a rhombic dodecahedron. Each edge of the tessellation is surrounded by either four or six disphenoids, according to whether it forms the base or one of the sides of its adjacent isosceles triangle faces respectively. When an edge forms the base of its adjacent isosceles triangles, and is surrounded by four disphenoids, they form an irregular octahedron. When an edge forms one of the two equal sides of its adjacent isosceles triangle faces, the six disphenoids surrounding the edge form a special type of parallelepiped called a trigonal trapezohedron.

An orientation of the tetragonal disphenoid honeycomb can be obtained by starting with a cubic honeycomb, subdividing it at the planes , , and (i.e. subdividing each cube into path-tetrahedra), then squashing it along the main diagonal until the distance between the points (0, 0, 0) and (1, 1, 1) becomes the same as the distance between the points (0, 0, 0) and (0, 0, 1).

{{-}}

Hexakis cubic honeycomb

Hexakis cubic honeycomb
Pyramidille[2]
TypeDual uniform honeycomb
Coxeter–Dynkin diagramsnode_f1|4|node_f1|3|node|4|node}}
CellIsosceles square pyramid
FacesTriangle
square
Space group
Fibrifold notation
3}}m (221)
4:2
Coxeter group, [4,3,4]
vertex figures {{CDD>node_f1|3|node|4|node}}, {{CDD|node|4|node_f1|3|node}}
DualTruncated cubic honeycomb
PropertiesCell-transitive

The hexakis cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls it a pyramidille.[3]

Cells can be seen in a translational cube, using 4 vertices on one face, and the cube center. Edges are colored by how many cells are around each of them.

It can be seen as a cubic honeycomb with each cube subdivided by a center point into 6 square pyramid cells.

There are two types of planes of faces: one as a square tiling, and flattened triangular tiling with half of the triangles removed as holes.

Tiling
plane
Symmetryp4m, [4,4] (*442)pmm, [∞,2,∞] (*2222)

Related honeycombs

It is dual to the truncated cubic honeycomb with octahedral and truncated cubic cells:

If the square pyramids of the pyramidille are joined on their bases, another honeycomb is created with identical vertices and edges, called a square bipyramidal honeycomb, or the dual of the rectified cubic honeycomb.

It is analogous to the 2-dimensional tetrakis square tiling:

Square bipyramidal honeycomb

Square bipyramidal honeycomb
Oblate octahedrille[4]
TypeDual uniform honeycomb
Coxeter–Dynkin diagramsnode|4|node_f1|3|node|4|node}}
CellSquare bipyramid
FacesTriangles
Space group
Fibrifold notation
3}}m (221)
4:2
Coxeter group, [4,3,4]
vertex figures {{CDD>node_f1|3|node|4|node}}, {{CDD|node|4|node_f1|3|node}}
DualRectified cubic honeycomb
PropertiesCell-transitive, Face-transitive

The square bipyramidal honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls it an oblate octahedrille or shortened to oboctahedrille.[5]

A cell can be seen positioned within a translational cube, with 4 vertices mid-edge and 2 vertices in opposite faces. Edges are colored and labeled by the number of cells around the edge.

It can be seen as a cubic honeycomb with each cube subdivided by a center point into 6 square pyramid cells. The original cubic honeycomb walls are removed, joining pairs of square pyramids into square bipyramids (octahedra). Its vertex and edge framework is identical to the hexakis cubic honeycomb.

There is one type of plane with faces: a flattended triangular tiling with half of the triangles as holes. These cut face-diagonally through the original cubes. There are also square tiling plane that exist as nonface holes passing through the centers of the octahedral cells.

Tiling
plane

Square tiling "holes"

flattened triangular tiling
Symmetryp4m, [4,4] (*442)pmm, [∞,2,∞] (*2222)

Related honeycombs

It is dual to the rectified cubic honeycomb with octahedral and cuboctahedral cells:

{{-}}

Phyllic disphenoidal honeycomb

{{clarify section|reason=How is this different from subdividing a cube into only six tetrahedra and then translating? And what is the justification for describing it in an article about a different honeycomb?|date=May 2018}}
Phyllic disphenoidal honeycomb
Eighth pyramidille[6]
(No image)
TypeDual uniform honeycomb
Coxeter-Dynkin diagramsnode_f1|4|node_f1|3|node_f1|4|node_f1|}}
Cell
Phyllic disphenoid
FacesRhombus
Triangle
Space group
Fibrifold notation
Coxeter notation
3}}m (229)
8o:2
[[4,3,4]]
Coxeter group[4,3,4],
vertex figures{{CDD>node_f1|3|node_f1|4|node_f1}}, {{CDD|node_f1|2x|node_f1|4|node_f1}}
DualOmnitruncated cubic honeycomb
PropertiesCell-transitive, face-transitive

The phyllic disphenoidal honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. John Horton Conway calls this an Eighth pyramidille.[7]

A cell can be see as 1/48 of a translational cube with vertices positioned: one corner, one edge center, one face center, and the cube center. The edge colors and labels specify how many cells exist around the edge.

Related honeycombs

It is dual to the omnitruncated cubic honeycomb:

See also

  • Architectonic and catoptric tessellation
  • Cubic honeycomb
  • space frame
  • Triakis truncated tetrahedral honeycomb

References

1. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 295
2. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
3. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
4. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 296
5. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 295
6. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 298
7. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p.293, 298
  • {{citation

| last = Gibb | first = William
| title = Paper patterns: solid shapes from metric paper
| year = 1990
| journal = Mathematics in School
| volume = 19
| issue = 3
| pages = 2–4}}, reprinted in {{citation
| editor-last = Pritchard | editor-first = Chris
| year = 2003
| title = The Changing Shape of Geometry: Celebrating a Century of Geometry and Geometry Teaching
| publisher = Cambridge University Press
| isbn = 0-521-53162-4
| pages = 363–366}}.
  • {{citation

| doi = 10.2307/2689983
| last = Senechal | first = Marjorie | authorlink = Marjorie Senechal
| title = Which tetrahedra fill space?
| year = 1981
| journal = Mathematics Magazine
| volume = 54
| issue = 5
| pages = 227–243
| publisher = Mathematical Association of America
| jstor = 2689983}}.
  • {{cite book | last1 = Conway | first1 = John H. | authorlink1 = John Horton Conway | last2 = Burgiel | first2 = Heidi | last3 = Goodman-Strauss | first3 = Chaim | title = The Symmetries of Things | publisher = A K Peters, Ltd. | date = 2008 | chapter = 21. Naming Archimedean and Catalan Polyhedra and Tilings | pages = 292–298 | isbn = 978-1-56881-220-5}}

1 : Honeycombs (geometry)

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 22:22:14