释义 |
- Definition Variations
- Properties Distribution Factorizations Smallest Fermat pseudoprimes List of Fermat pseudoprimes in fixed base n
- Which bases b make n a Fermat pseudoprime?
- Weak pseudoprimes
- Euler–Jacobi pseudoprimes
- Fermat primality test
- Applications
- References
- External links
In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Definition Fermat's little theorem states that if p is prime and a is coprime to p, then ap−1 − 1 is divisible by p. For an integer a > 1, if a composite integer x divides ax−1 − 1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a.[1] It follows that if x is a Fermat pseudoprime to base a, then x is coprime to a. [2]The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2. Pseudoprimes to base 2 are sometimes called Poulet numbers, after the Belgian mathematician Paul Poulet, Sarrus numbers, or Fermatians {{OEIS|id=A001567}}. A Fermat pseudoprime is often called a pseudoprime, with the modifier Fermat being understood. An integer x that is a Fermat pseudoprime for all values of a that are coprime to x is called a Carmichael number.[1] Variations Some sources use variations of the definition, for example to only allow odd numbers to be pseudoprimes.[3] Every odd number q satisfies for . This trivial case is excluded in the definition of a Fermat pseudoprime given by Crandall and Pomerance:[4] A composite number q is a Fermat pseudoprime to a base a, if {{math|aq-1 ≡ 1 mod q}} and {{math|a ≠ ±1 mod q}}. PropertiesDistributionThere are infinitely many pseudoprimes to a given base (in fact, infinitely many strong pseudoprimes (see Theorem 1 of [5]) and infinitely many Carmichael numbers [6]) , but they are rather rare. There are only three pseudoprimes to base 2 below 1000, 245 below one million, and only 21853 less than 25·109 (see Table 1 of [5]). Starting at 17·257, the product of consecutive Fermat numbers is a base-2 pseudoprime, and so are all Fermat composite and Mersenne composite. FactorizationsThe factorizations of the 60 Poulet numbers up to 60787, including 13 Carmichael numbers (in bold), are in the following table. {{OEIS|id=A001567}} Poulet 1 to 15341 | 11 · 31 | 561 | 3 · 11 · 17 | 645 | 3 · 5 · 43 | 1105 | 5 · 13 · 17 | 1387 | 19 · 73 | 1729 | 7 · 13 · 19 | 1905 | 3 · 5 · 127 | 2047 | 23 · 89 | 2465 | 5 · 17 · 29 | 2701 | 37 · 73 | 2821 | 7 · 13 · 31 | 3277 | 29 · 113 | 4033 | 37 · 109 | 4369 | 17 · 257 | 4371 | 3 · 31 · 47 | Poulet 16 to 304681 | 31 · 151 | 5461 | 43 · 127 | 6601 | 7 · 23 · 41 | 7957 | 73 · 109 | 8321 | 53 · 157 | 8481 | 3 · 11 · 257 | 8911 | 7 · 19 · 67 | 10261 | 31 · 331 | 10585 | 5 · 29 · 73 | 11305 | 5 · 7 · 17 · 19 | 12801 | 3 · 17 · 251 | 13741 | 7 · 13 · 151 | 13747 | 59 · 233 | 13981 | 11 · 31 · 41 | 14491 | 43 · 337 | Poulet 31 to 4515709 | 23 · 683 | 15841 | 7 · 31 · 73 | 16705 | 5 · 13 · 257 | 18705 | 3 · 5 · 29 · 43 | 18721 | 97 · 193 | 19951 | 71 · 281 | 23001 | 3 · 11 · 17 · 41 | 23377 | 97 · 241 | 25761 | 3 · 31 · 277 | 29341 | 13 · 37 · 61 | 30121 | 7 · 13 · 331 | 30889 | 17 · 23 · 79 | 31417 | 89 · 353 | 31609 | 73 · 433 | 31621 | 103 · 307 | Poulet 46 to 6033153 | 3 · 43 · 257 | 34945 | 5 · 29 · 241 | 35333 | 89 · 397 | 39865 | 5 · 7 · 17 · 67 | 41041 | 7 · 11 · 13 · 41 | 41665 | 5 · 13 · 641 | 42799 | 127 · 337 | 46657 | 13 · 37 · 97 | 49141 | 157 · 313 | 49981 | 151 · 331 | 52633 | 7 · 73 · 103 | 55245 | 3 · 5 · 29 · 127 | 57421 | 7 · 13 · 631 | 60701 | 101 · 601 | 60787 | 89 · 683 |
A Poulet number all of whose divisors d divide 2d − 2 is called a super-Poulet number. There are infinitely many Poulet numbers which are not super-Poulet Numbers.[7] Smallest Fermat pseudoprimes The smallest pseudoprime for each base a ≤ 200 is given in the following table; the colors mark the number of prime factors. Unlike in the definition at the start of the article, pseudoprimes below a are excluded in the table. (For that to allow pseudoprimes below a, see {{oeis|id=A090086}}) {{OEIS|id=A007535}} a | smallest p-p | a | smallest p-p | a | smallest p-p | a | smallest p-p |
---|
1 | 4 = 2² | 51 | 65 = 5 · 13 | 101 | 175 = 5² · 7 | 151 | 175 = 5² · 7 | 2 | 341 = 11 · 31 | 52 | 85 = 5 · 17 | 102 | 133 = 7 · 19 | 152 | 153 = 3² · 17 | 3 | 91 = 7 · 13 | 53 | 65 = 5 · 13 | 103 | 133 = 7 · 19 | 153 | 209 = 11 · 19 | 4 | 15 = 3 · 5 | 54 | 55 = 5 · 11 | 104 | 105 = 3 · 5 · 7 | 154 | 155 = 5 · 31 | 5 | 124 = 2² · 31 | 55 | 63 = 3² · 7 | 105 | 451 = 11 · 41 | 155 | 231 = 3 · 7 · 11 | 6 | 35 = 5 · 7 | 56 | 57 = 3 · 19 | 106 | 133 = 7 · 19 | 156 | 217 = 7 · 31 | 7 | 25 = 5² | 57 | 65 = 5 · 13 | 107 | 133 = 7 · 19 | 157 | 186 = 2 · 3 · 31 | 8 | 9 = 3² | 58 | 133 = 7 · 19 | 108 | 341 = 11 · 31 | 158 | 159 = 3 · 53 | 9 | 28 = 2² · 7 | 59 | 87 = 3 · 29 | 109 | 117 = 3² · 13 | 159 | 247 = 13 · 19 | 10 | 33 = 3 · 11 | 60 | 341 = 11 · 31 | 110 | 111 = 3 · 37 | 160 | 161 = 7 · 23 | 11 | 15 = 3 · 5 | 61 | 91 = 7 · 13 | 111 | 190 = 2 · 5 · 19 | 161 | 190 = 2 · 5 · 19 | 12 | 65 = 5 · 13 | 62 | 63 = 3² · 7 | 112 | 121 = 11² | 162 | 481 = 13 · 37 | 13 | 21 = 3 · 7 | 63 | 341 = 11 · 31 | 113 | 133 = 7 · 19 | 163 | 186 = 2 · 3 · 31 | 14 | 15 = 3 · 5 | 64 | 65 = 5 · 13 | 114 | 115 = 5 · 23 | 164 | 165 = 3 · 5 · 11 | 15 | 341 = 11 · 31 | 65 | 112 = 2⁴ · 7 | 115 | 133 = 7 · 19 | 165 | 172 = 2² · 43 | 16 | 51 = 3 · 17 | 66 | 91 = 7 · 13 | 116 | 117 = 3² · 13 | 166 | 301 = 7 · 43 | 17 | 45 = 3² · 5 | 67 | 85 = 5 · 17 | 117 | 145 = 5 · 29 | 167 | 231 = 3 · 7 · 11 | 18 | 25 = 5² | 68 | 69 = 3 · 23 | 118 | 119 = 7 · 17 | 168 | 169 = 13² | 19 | 45 = 3² · 5 | 69 | 85 = 5 · 17 | 119 | 177 = 3 · 59 | 169 | 231 = 3 · 7 · 11 | 20 | 21 = 3 · 7 | 70 | 169 = 13² | 120 | 121 = 11² | 170 | 171 = 3² · 19 | 21 | 55 = 5 · 11 | 71 | 105 = 3 · 5 · 7 | 121 | 133 = 7 · 19 | 171 | 215 = 5 · 43 | 22 | 69 = 3 · 23 | 72 | 85 = 5 · 17 | 122 | 123 = 3 · 41 | 172 | 247 = 13 · 19 | 23 | 33 = 3 · 11 | 73 | 111 = 3 · 37 | 123 | 217 = 7 · 31 | 173 | 205 = 5 · 41 | 24 | 25 = 5² | 74 | 75 = 3 · 5² | 124 | 125 = 5³ | 174 | 175 = 5² · 7 | 25 | 28 = 2² · 7 | 75 | 91 = 7 · 13 | 125 | 133 = 7 · 19 | 175 | 319 = 11 · 19 | 26 | 27 = 3³ | 76 | 77 = 7 · 11 | 126 | 247 = 13 · 19 | 176 | 177 = 3 · 59 | 27 | 65 = 5 · 13 | 77 | 247 = 13 · 19 | 127 | 153 = 3² · 17 | 177 | 196 = 2² · 7² | 28 | 45 = 3² · 5 | 78 | 341 = 11 · 31 | 128 | 129 = 3 · 43 | 178 | 247 = 13 · 19 | 29 | 35 = 5 · 7 | 79 | 91 = 7 · 13 | 129 | 217 = 7 · 31 | 179 | 185 = 5 · 37 | 30 | 49 = 7² | 80 | 81 = 3⁴ | 130 | 217 = 7 · 31 | 180 | 217 = 7 · 31 | 31 | 49 = 7² | 81 | 85 = 5 · 17 | 131 | 143 = 11 · 13 | 181 | 195 = 3 · 5 · 13 | 32 | 33 = 3 · 11 | 82 | 91 = 7 · 13 | 132 | 133 = 7 · 19 | 182 | 183 = 3 · 61 | 33 | 85 = 5 · 17 | 83 | 105 = 3 · 5 · 7 | 133 | 145 = 5 · 29 | 183 | 221 = 13 · 17 | 34 | 35 = 5 · 7 | 84 | 85 = 5 · 17 | 134 | 135 = 3³ · 5 | 184 | 185 = 5 · 37 | 35 | 51 = 3 · 17 | 85 | 129 = 3 · 43 | 135 | 221 = 13 · 17 | 185 | 217 = 7 · 31 | 36 | 91 = 7 · 13 | 86 | 87 = 3 · 29 | 136 | 265 = 5 · 53 | 186 | 187 = 11 · 17 | 37 | 45 = 3² · 5 | 87 | 91 = 7 · 13 | 137 | 148 = 2² · 37 | 187 | 217 = 7 · 31 | 38 | 39 = 3 · 13 | 88 | 91 = 7 · 13 | 138 | 259 = 7 · 37 | 188 | 189 = 3³ · 7 | 39 | 95 = 5 · 19 | 89 | 99 = 3² · 11 | 139 | 161 = 7 · 23 | 189 | 235 = 5 · 47 | 40 | 91 = 7 · 13 | 90 | 91 = 7 · 13 | 140 | 141 = 3 · 47 | 190 | 231 = 3 · 7 · 11 | 41 | 105 = 3 · 5 · 7 | 91 | 115 = 5 · 23 | 141 | 355 = 5 · 71 | 191 | 217 = 7 · 31 | 42 | 205 = 5 · 41 | 92 | 93 = 3 · 31 | 142 | 143 = 11 · 13 | 192 | 217 = 7 · 31 | 43 | 77 = 7 · 11 | 93 | 301 = 7 · 43 | 143 | 213 = 3 · 71 | 193 | 276 = 2² · 3 · 23 | 44 | 45 = 3² · 5 | 94 | 95 = 5 · 19 | 144 | 145 = 5 · 29 | 194 | 195 = 3 · 5 · 13 | 45 | 76 = 2² · 19 | 95 | 141 = 3 · 47 | 145 | 153 = 3² · 17 | 195 | 259 = 7 · 37 | 46 | 133 = 7 · 19 | 96 | 133 = 7 · 19 | 146 | 147 = 3 · 7² | 196 | 205 = 5 · 41 | 47 | 65 = 5 · 13 | 97 | 105 = 3 · 5 · 7 | 147 | 169 = 13² | 197 | 231 = 3 · 7 · 11 | 48 | 49 = 7² | 98 | 99 = 3² · 11 | 148 | 231 = 3 · 7 · 11 | 198 | 247 = 13 · 19 | 49 | 66 = 2 · 3 · 11 | 99 | 145 = 5 · 29 | 149 | 175 = 5² · 7 | 199 | 225 = 3² · 5² | 50 | 51 = 3 · 17 | 100 | 153 = 3² · 17 | 150 | 169 = 13² | 200 | 201 = 3 · 67 |
List of Fermat pseudoprimes in fixed base n n | First few Fermat pseudoprimes in base n | OEIS sequence | 1 | 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, ... (All composites) | id=A002808}} | 2 | 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... | id=A001567}} | 3 | 91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... | id=A005935}} | 4 | 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... | id=A020136}} | 5 | 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... | id=A005936}} | 6 | 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881, ... | id=A005937}} | 7 | 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, ... | id=A005938}} | 8 | 9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861, 949, 1001, 1105, 1281, 1365, 1387, 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641, 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 9265, 9709, 9773, 9881, 9945, ... | id=A020137}} | 9 | 4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911, ... | id=A020138}} | 10 | 9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911, ... | id=A005939}} | 11 | 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, ... | id=A020139}} | 12 | 65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891, 2041, 2233, 2465, 2701, 2821, 2983, 3367, 3553, 5005, 5365, 5551, 5785, 6061, 6305, 6601, 8911, 9073, ... | id=A020140}} | 13 | 4, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465, 2806, 3605, 5028, 5149, 5185, 5565, 6601, 7107, 8841, 8911, 9577, 9637, ... | id=A020141}} | 14 | 15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, ... | id=A020142}} | 15 | 14, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7471, 8701, 8911, 9073, ... | id=A020143}} | 16 | 15, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285, 1387, 1581, 1687, 1695, 1729, 1891, 1905, 2047, 2071, 2091, 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9919, ... | id=A020144}} | 17 | 4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911, ... | id=A020145}} | 18 | 25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387, 1649, 1729, 1921, 2149, 2465, 2701, 2821, 2825, 2977, 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061, ... | id=A020146}} | 19 | 6, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661, 1849, 1891, 2353, 2465, 2701, 2821, 2955, 3201, 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997, ... | id=A020147}} | 20 | 21, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501, 2761, 2821, 2947, 3059, 3201, 4047, 5271, 5461, 5473, 5713, 5833, 6601, 6817, 7999, 8421, 8911, ... | id=A020148}} | 21 | 4, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185, 5473, 5995, 6541, 7363, 8695, 8965, 9061, ... | id=A020149}} | 22 | 21, 69, 91, 105, 161, 169, 345, 483, 485, 645, 805, 1105, 1183, 1247, 1261, 1541, 1649, 1729, 1891, 2037, 2041, 2047, 2413, 2465, 2737, 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 6693, 7081, 7107, 7267, 7665, 8119, 8365, 8421, 8911, 9453, ... | id=A020150}} | 23 | 22, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027, 1045, 1065, 1105, 1183, 1271, 1729, 1738, 1749, 2059, 2321, 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 8365, 8651, 8745, 8911, 8965, 9805, ... | id=A020151}} | 24 | 25, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425, 2465, 2701, 2737, 2821, 2885, 3781, 4207, 4537, 6601, 6931, 6943, 7081, 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809, ... | id=A020152}} | 25 | 4, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 804, 868, 946, 1128, 1288, 1541, 1729, 1891, 2047, 2701, 2806, 2821, 2911, 2926, 3052, 3126, 3367, 3592, 3976, 4069, 4123, 4207, 4564, 4636, 4686, 5321, 5461, 5551, 5611, 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9881, 9976, ... | id=A020153}} | 26 | 9, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703, 775, 925, 1035, 1065, 1147, 2465, 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525, 6601, 6697, 8029, 8695, 8911, 9073, ... | id=A020154}} | 27 | 26, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541, 1649, 1729, 1891, 2071, 2465, 2665, 2701, 2821, 2981, 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321, 8401, 8911, 9139, 9709, 9809, 9841, 9881, 9919, ... | id=A020155}} | 28 | 9, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413, 2465, 2871, 3201, 3277, 4553, 4699, 5149, 5181, 5365, 7065, 8149, 8321, 8401, 9841, ... | id=A020156}} | 29 | 4, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 1876, 1897, 2105, 2257, 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097, 6601, 7161, 7294, 8321, 8401, 8421, 8841, 8911, ... | id=A020157}} | 30 | 49, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273, 1519, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 3283, 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8401, 8911, 9881, ... | id=A020158}} |
For more information (base 31 to 100), see {{oeis|id=A020159}} to {{oeis|id=A020228}}, and for all bases up to 150, see table of Fermat pseudoprimes (text in German), this page does not define n is a pseudoprime to a base congruent to 1 or -1 (mod n) Which bases b make n a Fermat pseudoprime?If composite is even, then is a Fermat pseudoprime to the trivial bases . If composite is odd, then is a Fermat pseudoprime to the trivial bases . For any composite , the number of distinct bases modulo , for which is a Fermat pseudoprime base , is [8]{{rp|Thm. 1, p. 1392}} where are the distinct prime factors of . This includes the trivial bases. For example, for , this product is . For , the smallest such nontrivial base is . Every odd composite is a Fermat pseudoprime to at least two nontrivial bases modulo unless is a power of 3.[8]{{rp|Cor. 1, p. 1393}} For composite n < 200, the following is a table of all bases b < n which n is a Fermat pseudoprime. If a composite number n is not in the table (or n is in the sequence {{OEIS link|id=A209211}}), then n is a pseudoprime only to the trivial base 1 modulo n. n | bases b to which n is a Fermat pseudoprime (< n) | b (< n) {{OEIS>id=A063994}} | 9 | 1, 8 | 2 | 15 | 1, 4, 11, 14 | 4 | 21 | 1, 8, 13, 20 | 4 | 25 | 1, 7, 18, 24 | 4 | 27 | 1, 26 | 2 | 28 | 1, 9, 25 | 3 | 33 | 1, 10, 23, 32 | 4 | 35 | 1, 6, 29, 34 | 4 | 39 | 1, 14, 25, 38 | 4 | 45 | 1, 8, 17, 19, 26, 28, 37, 44 | 8 | 49 | 1, 18, 19, 30, 31, 48 | 6 | 51 | 1, 16, 35, 50 | 4 | 52 | 1, 9, 29 | 3 | 55 | 1, 21, 34, 54 | 4 | 57 | 1, 20, 37, 56 | 4 | 63 | 1, 8, 55, 62 | 4 | 65 | 1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64 | 16 | 66 | 1, 25, 31, 37, 49 | 5 | 69 | 1, 22, 47, 68 | 4 | 70 | 1, 11, 51 | 3 | 75 | 1, 26, 49, 74 | 4 | 76 | 1, 45, 49 | 3 | 77 | 1, 34, 43, 76 | 4 | 81 | 1, 80 | 2 | 85 | 1, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 84 | 16 | 87 | 1, 28, 59, 86 | 4 | 91 | 1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90 | 36 | 93 | 1, 32, 61, 92 | 4 | 95 | 1, 39, 56, 94 | 4 | 99 | 1, 10, 89, 98 | 4 | 105 | 1, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 104 | 16 | 111 | 1, 38, 73, 110 | 4 | 112 | 1, 65, 81 | 3 | 115 | 1, 24, 91, 114 | 4 | 117 | 1, 8, 44, 53, 64, 73, 109, 116 | 8 | 119 | 1, 50, 69, 118 | 4 | 121 | 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 | 10 | 123 | 1, 40, 83, 122 | 4 | 124 | 1, 5, 25 | 3 | 125 | 1, 57, 68, 124 | 4 | 129 | 1, 44, 85, 128 | 4 | 130 | 1, 61, 81 | 3 | 133 | 1, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68, 69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132 | 36 | 135 | 1, 26, 109, 134 | 4 | 141 | 1, 46, 95, 140 | 4 | 143 | 1, 12, 131, 142 | 4 | 145 | 1, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 144 | 16 | 147 | 1, 50, 97, 146 | 4 | 148 | 1, 121, 137 | 3 | 153 | 1, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 152 | 16 | 154 | 1, 23, 67 | 3 | 155 | 1, 61, 94, 154 | 4 | 159 | 1, 52, 107, 158 | 4 | 161 | 1, 22, 139, 160 | 4 | 165 | 1, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 164 | 16 | 169 | 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168 | 12 | 171 | 1, 37, 134, 170 | 4 | 172 | 1, 49, 165 | 3 | 175 | 1, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 174 | 12 | 176 | 1, 49, 81, 97, 113 | 5 | 177 | 1, 58, 119, 176 | 4 | 183 | 1, 62, 121, 182 | 4 | 185 | 1, 6, 31, 36, 38, 43, 68, 73, 112, 117, 142, 147, 149, 154, 179, 184 | 16 | 186 | 1, 97, 109, 157, 163 | 5 | 187 | 1, 67, 120, 186 | 4 | 189 | 1, 55, 134, 188 | 4 | 190 | 1, 11, 61, 81, 101, 111, 121, 131, 161 | 9 | 195 | 1, 14, 64, 79, 116, 131, 181, 194 | 8 | 196 | 1, 165, 177 | 3 |
For more information (n = 201 to 5000), see,[9] this page does not define n is a pseudoprime to a base congruent to 1 or -1 (mod n). Note that when p is a prime, p2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 10932 = 1194649 is a Fermat pseudoprime to base 2, and 112 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n - 1, since all b satisfy the Fermat little theorem) 1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, ... {{OEIS|id=A063994}} The least base b > 1 which n is a pseudoprime to base b (or prime number) are 2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, ... {{OEIS|id=A105222}} The number of the values of b for n must divides (n), or {{OEIS link|id=A000010}}(n) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, ... (The quotient can be any natural number, and the quotient = 1 if and only if n is a prime or a Carmichael number (561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, ... {{OEIS link|id=A002997}}), the quotient = 2 if and only if n is in the sequence: 4, 6, 15, 91, 703, 1891, 2701, 11305, 12403, 13981, 18721, ... {{OEIS link|id=A191311}}) The least number with n values of b are (or 0 if no such number exists) 1, 3, 28, 5, 66, 7, 232, 45, 190, 11, 276, 13, 1106, 0, 286, 17, 1854, 19, 3820, 891, 2752, 23, 1128, 595, 2046, 0, 532, 29, 1770, 31, 9952, 425, 1288, 0, 2486, 37, 8474, 0, 742, 41, 3486, 43, 7612, 5589, 2356, 47, 13584, 325, 9850, 0, ... {{OEIS|id=A064234}} (if and only if n is even and not totient of squarefree number, then the nth term of this sequence is 0) Weak pseudoprimesA composite number n which satisfy that is called weak pseudoprime to base b. A pseudoprime to base a (under the usual definition) satisfies this condition. Conversely, a weak pseudoprime that's coprime with the base is a pseudoprime in the usual sense, otherwise this may or may not be the case. [10] The least weak pseudoprime to base b = 1, 2, ... are: 4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, ... {{OEIS|id=A000790}} Note that all terms are less than or equal to the smallest Carmichael number, 561. Except for 561, only semiprimes can occur in the above sequence, but not all semiprimes less than 561 occur, a semiprime pq (p ≤ q) less than 561 occurs in the above sequences if and only if p − 1 divides q − 1. (see {{oeis|id=A108574}}) Besides, the smallest pseudoprime to base n (also not necessary exceeding n) ({{oeis|A090086}}) is also usually semiprime, the first counterexample is {{OEIS link|A090086}}(648) = 385 = 5 × 7 × 11. If we require n > b, they are (for b = 1, 2, ...) 4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 51, ... {{OEIS|id=A239293}} Carmichael numbers are weak pseudoprimes to all bases. The smallest even weak pseudoprime in base 2 is 161038 (see {{oeis|id=A006935}}). Euler–Jacobi pseudoprimes {{main|Euler–Jacobi pseudoprime}}Another approach is to use more refined notions of pseudoprimality, e.g. strong pseudoprimes or Euler–Jacobi pseudoprimes, for which there are no analogues of Carmichael numbers. This leads to probabilistic algorithms such as the Solovay–Strassen primality test, the Baillie-PSW primality test, and the Miller–Rabin primality test, which produce what are known as industrial-grade primes. Industrial-grade primes are integers for which primality has not been "certified" (i.e. rigorously proven), but have undergone a test such as the Miller–Rabin test which has nonzero, but arbitrarily low, probability of failure. Fermat primality testLike the Lucas primality test, for a large number n (we assume that n is odd and nonsquare, or we can know that n is composite), we can choose the smallest positive integer b such that (where is the Jacobi symbol) as the base and use Fermat test, Euler-Jacobi test or Miller-Rabin test to test the primality of n. (If b and n have a prime factor in common, then , and if we found such b, then we can know that n is composite). (This search will never succeed if n is square, and conversely if it does succeed, that is proof that n is not square. Thus, some time can be saved by delaying testing n for squareness until after the first few search steps have all failed.) When use this test, the first few Fermat pseudoprimes are 217, 341, 561, 645, 703, 1105, 1387, 1729, 1825, 2465, 2701, 2821, 3277, 3281, 3367, 3751, 4371, 4961, 5461, 5551, 6601, 7957, 8911, 10225, 10261, 10585, 11521, 12025, 13741, 13747, 13981, 14089, 14383, 14491, 15709, 15841, 16297, 16471, 18721, 20425, 22945, 24727, 29341, 30673, 30857, 31621, 31697, 32791, 35333, 35425, 38503, 39865, 41041, 41329, 44287, 46657, 46999, 49105, 49141, 49321, 49981, ... The first few Euler pseudoprimes are 217, 341, 561, 703, 1729, 1825, 2465, 3277, 3281, 4961, 5461, 8911, 10225, 10261, 11521, 12025, 14089, 15709, 15841, 16297, 20425, 29341, 30673, 30857, 31621, 31697, 35425, 39865, 41041, 41329, 44287, 46657, 49105, 49141, 49321, 49981, 50881, 54145, 65077, 68401, 72041, 75241, 75361, 80581, 83333, 88357, 88705, 96049, 96985, 97567, 97921, ... The first few Euler-Jacobi pseudoprimes are 703, 3277, 3281, 8911, 14089, 29341, 44287, 49141, 80581, 88357, 97567, 102311, 104653, 121463, 152551, 172369, 173951, 182527, 188191, 195313, 196093, 216457, 218791, 304921, 313447, 314821, 320167, 364231, 410041, 458989, 476971, 489997, 491209, 497503, 658711, 665281, 721801, 777961, 800605, 838861, 859951, 873181, 877099, 973241, ... The first few strong pseudoprimes are 703, 3277, 3281, 8911, 14089, 29341, 44287, 49141, 80581, 88357, 97567, 102311, 104653, 121463, 152551, 172369, 173951, 182527, 188191, 195313, 196093, 216457, 218791, 304921, 313447, 314821, 320167, 364231, 410041, 458989, 476971, 489997, 491209, 497503, 658711, 665281, 721801, 777961, 800605, 838861, 859951, 873181, 877099, 973241, ... Test | Fermat primality test | Lucas primality test | Condition of the number n | n is odd and nonsquare |
---|
Choose base b (for Fermat) or Lucas parameters (P, Q) (for Lucas) | b is the first number in the sequence 2, 3, 4, 5, 6, 7, 8, ... such that (where is the Jacobi symbol) | P = 1, Q is the first number in the sequence −1, 2, −2, 3, −3, 4, −4, ... such that (where is the Jacobi symbol) |
---|
The first few pseudoprimes | 217, 341, 561, 645, 703, 1105, 1387, 1729, 1825, 2465, 2701, 2821, 3277, 3281, 3367, 3751, 4371, 4961, 5461, 5551, 6601, 7957, 8911 | 323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179 |
---|
The first few strong pseudoprimes | 703, 3277, 3281, 8911, 14089, 29341, 44287, 49141, 80581, 88357, 97567 | 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, 75077, 97439 |
---|
It is conjectured that there is no composite number that passes both the strong (Fermat) primality test and the strong Lucas primality test. ApplicationsThe rarity of such pseudoprimes has important practical implications. For example, public-key cryptography algorithms such as RSA require the ability to quickly find large primes. The usual algorithm to generate prime numbers is to generate random odd numbers and test them for primality. However, deterministic primality tests are slow. If the user is willing to tolerate an arbitrarily small chance that the number found is not a prime number but a pseudoprime, it is possible to use the much faster and simpler Fermat primality test. References1. ^1 {{cite book |last=Desmedt |first=Yvo |editor1-last=Atallah |editor1-first=Mikhail J. |editor1-link=Mikhail Atallah |editor2-last=Blanton |editor2-first=Marina |year=2010 |title=Algorithms and theory of computation handbook: Special topics and techniques |chapter=Encryption Schemes |publisher=CRC Press |isbn=978-1-58488-820-8 |pages=10–23 |chapter-url=https://books.google.com/books?id=SbPpg_4ZRGsC&pg=SA10-PA23}} 2. ^{{cite web | url=https://math.stackexchange.com/questions/320967/if-n-geq-1-is-not-prime-and-x-in-mathbbz-n-such-that-gcdx-n-neq-1?rq=1 |title = Contrapositive of this statement on math.stackexchange}} 3. ^{{MathWorld|title=Fermat Pseudoprime|urlname=FermatPseudoprime}} 4. ^{{cite book |last1=Crandall |first1=Richard |authorlink1=Richard Crandall |last2=Pomerance |first2=Carl |authorlink2=Carl Pomerance |year=2001 |title=Prime Numbers – A Computational Perspective |chapter=Theorem 3.4.2 |publisher=Springer-Verlag |page=132}} 5. ^1 {{cite journal |last1=Pomerance |first1=Carl |authorlink1=Carl Pomerance |last2=Selfridge |first2=John L. |authorlink2=John L. Selfridge |last3=Wagstaff |first3=Samuel S., Jr. |authorlink3=Samuel S. Wagstaff Jr. |date=July 1980 |title=The pseudoprimes to 25·109 |journal=Mathematics of Computation |doi=10.1090/S0025-5718-1980-0572872-7 |volume=35 |issue=151 |pages=1003–1026 |url=http://www.math.dartmouth.edu/~carlp/PDF/paper25.pdf }} 6. ^{{cite journal |last1=Alford |first1=W. R. |authorlink=W. R. (Red) Alford |last2=Granville |first2=Andrew |authorlink2=Andrew Granville |last3=Pomerance |first3=Carl |authorlink3=Carl Pomerance |year=1994 |title=There are Infinitely Many Carmichael Numbers |journal=Annals of Mathematics |doi=10.2307/2118576 |volume=140 |issue=3 |pages=703–722 |url=http://www.math.dartmouth.edu/~carlp/PDF/paper95.pdf |jstor=2118576 }} 7. ^{{Citation|date = 1988-02-15|edition = 2 Sub|isbn = 9780444866622|location = Amsterdam|publisher = North Holland|title = Elementary Theory of Numbers|first = W.|last = Sierpinski|chapter = Chapter V.7|page = 232|series = North-Holland Mathematical Library|editor = Ed. A. Schinzel }} 8. ^1 {{cite journal |author=Robert Baillie |author2=Samuel S. Wagstaff Jr.|title=Lucas Pseudoprimes|journal=Mathematics of Computation|date=October 1980|volume=35|issue=152|pages=1391–1417|url=http://mpqs.free.fr/LucasPseudoprimes.pdf| mr=583518| doi=10.1090/S0025-5718-1980-0583518-6 }} 9. ^{{cite web|url=http://de.m.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Pseudoprimzahlen_(15_-_4999)|title=Pseudoprimzahlen: Tabelle Pseudoprimzahlen (15 - 4999) – Wikibooks, Sammlung freier Lehr-, Sach- und Fachbücher|author=|date=|website=de.m.wikibooks.org|accessdate=21 April 2018}} 10. ^{{cite web|url=http://www.numericana.com/answer/pseudo.htm#weak|title=Pseudo-primes, Weak Pseudoprimes, Strong Pseudoprimes, Primality - Numericana|first=Gerard|last=Michon|date=|website=www.numericana.com|accessdate=21 April 2018}}
External links- W. F. Galway and Jan Feitsma, Tables of pseudoprimes and related data (comprehensive list of all pseudoprimes below 264, including factorization, strong pseudoprimes, and Carmichael numbers)
- A research for pseudoprime
{{Classes of natural numbers}} 2 : Pseudoprimes|Asymmetric-key algorithms |