词条 | Thorpe–Ingold effect |
释义 |
The Thorpe–Ingold effect, gem-dimethyl effect, or angle compression is an effect observed in chemistry where large substituents favor ring closure and intramolecular reactions. The effect was first reported by Beesley, Thorpe, and Ingold in 1915 as part of a study of cyclization reactions.[1] It has since been generalized to many areas of chemistry.[2] The comparative rates of lactone formation (lactonization) of various 2-hydroxybenzenepropionic acids illustrate the effect. The placement of an increasing number of methyl groups accelerates the cyclization process.[3] One application of this effect is addition of a quaternary carbon (e.g., a gem-dimethyl group) in an alkyl chain to increase the reaction rate and/or equilibrium constant of cyclization reactions. An example of this is an olefin metathesis reaction:[4] One proposed explanation for this effect is that the increased size of the substituents increases the angle between them. As a result, the angle between the other two substituents decreases. By moving them closer together, reactions between them are accelerated. It is thus a kinetic effect. The effect also has some thermodynamic contribution as the in silico strain energy decreases on going from cyclobutane to 1-methylcyclobutane and 1,1-dimethylcyclobutane by a value between 8 kcal/mole[5] and 1.5 kcal/mole.[6] A noteworthy example of Thorpe-Ingold effect in supramolecular catalysis is given by diphenylmethane derivatives provided with guanidinium groups.[7] These compounds are active in the cleavage of the RNA model compound HPNP. Substitution of the methylene group of the parent diphenylmethane spacer with cyclohexylidene and adamantylidene moieties enhances catalytic efficiency, with gem dialkyl effect accelerations of 4.5 and 9.1, respectively. References1. ^{{cite journal | author = Beesley, Richard Moore |author2=Ingold, Christopher Kelk |author3=Thorpe, Jocelyn Field | title = CXIX.–The formation and stability of spiro-compounds. Part I. Spiro-Compounds from cyclohexane | journal = J. Chem. Soc., Trans. | year = 1915 | volume = 107 | pages = 1080–1106|doi=10.1039/CT9150701080}} 2. ^{{cite journal|author=Shaw, B. L.|title=Formation of Large Rings, Internal Metalation Reactions, and Internal Entropy Effects|journal=Journal of the American Chemical Society|year=1975|volume=97|issue=13|pages=3856–3857|doi=10.1021/ja00846a072}} 3. ^Michael N. Levine, Ronald T. Raines "Trimethyl lock: a trigger for molecular release in chemistry, biology, and pharmacology (perspective)" Chem. Sci., 2012, volume 3, 2412–2420. {{DOI|10.1039/C2SC20536J}} 4. ^{{cite journal |journal=J. Org. Chem. |volume=61 |issue=25 |pages=8746–8749 |doi=10.1021/jo961600c|title=A Concise Total Synthesis of Dactylol via Ring Closing Metathesis |last=Fürstner |first=A |author2=Langemann, K. |year=1996|hdl=11858/00-001M-0000-0024-07AC-2 }} 5. ^Conventional Strain Energy in Dimethyl-Substituted Cyclobutane and the gem-Dimethyl Effect Ashley L. Ringer† and David H. Magers J. Org. Chem. 2007, 72, 2533–2537 {{DOI|10.1021/jo0624647}} 6. ^The gem-Dimethyl Effect Revisited Steven M. Bachrach J. Org. Chem. 2008, 73, 2466–2468 {{DOI|10.1021/jo702665r}} 7. ^Guanidine−Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; gem-Dialkyl Effect on Catalytic Efficiency Riccardo Salvio, Luigi Mandolini, Claudia Savelli J. Org. Chem. 2013, 78, 7259-7263 {{DOI|10.1021/jo401085z}} See also
3 : Physical organic chemistry|Chemical kinetics|Stereochemistry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。