请输入您要查询的百科知识:

 

词条 Totten Glacier
释义

  1. Melt

  2. See also

  3. References

{{Infobox glacier
| child =
| name = Totten Glacier
| other_name =
| photo = Antarctica Map.png
| photo_width = 250px
| photo_alt =
| photo_caption = Map of Antarctica, with Wilkes Land slightly to the right
| map = Antarctica
| map_width =
| map_alt =
| map_caption = Location of Totten Glacier in Antarctica
| mark = Red_pog.svg
| type =
| location = Wilkes Land
| coordinates = {{coord|67|00|00|S|116|20|00|E|region:AQ|format=dms|display=inline}}
| coords_ref =
| area =
| length =
| width =
| thickness =
| elevation_max =
| elevation_min =
| terminus =
| status =
| embedded =
}}

Totten Glacier is a large glacier draining a major portion of the East Antarctic Ice Sheet, through the Budd Coast of Wilkes Land in the Australian Antarctic Territory. The catchment drained by the glacier is estimated at {{convert|538,000|km2|abbr=on}},[1] extending approximately {{convert|1100|km|abbr=on}} into the interior and holds the potential to raise sea level by at least {{convert|3.5|m|abbr=on}}.[2] Totten drains northeastward from the continental ice but turns northwestward at the coast where it terminates in a prominent tongue close east of Cape Waldron. It was first delineated from aerial photographs taken by USN Operation Highjump (1946–47), and named by Advisory Committee on Antarctic Names (US-ACAN) for George M. Totten, midshipman on {{USS|Vincennes|1826|6}} of the United States Exploring Expedition (1838–42), who assisted Lieutenant Charles Wilkes with correction of the survey data obtained by the expedition.

Totten Ice Shelf is a {{convert|6200|km2|abbr=on}} floating portion of Totten Glacier, laterally bounded by the Aurora Subglacial Basin to the south and Law Dome to the north. The ice shelf exists at the confluence of the two main grounded tributaries of Totten Glacier, its base lies {{convert|2500|m|abbr=on}} below sea level near the grounding line of the western tributary, and the ice shelf surface is characterized by longitudinal channels and transverse fractures.[3][4] Totten Ice Shelf is of glaciological interest because it buttresses the flow of grounded ice while coupling the ice basin to ocean processes such as ocean warming.[5][5]

Totten Glacier Tongue ({{coord|66|35|S|116|5|E||}}) is a small glacier tongue extending seaward from Totten Glacier. Delineated from air photos taken by U.S. Navy Operation Highjump (1946–47) and named by US-ACAN in association with Totten Glacier.

Melt

Totten Glacier drains the Aurora Subglacial Basin, which is largely grounded below sea level[6] and is subject to marine ice sheet instability, meaning melt near the grounding line could lead to runaway glacier retreat and a significant contribution to sea level rise.

Surface altimetry measurements from Interferometric synthetic-aperture radar suggest that Totten Glacier lost mass from 1992 to 2006[7] and gravity measurements obtained by the Gravity Recovery and Climate Experiment satellite indicate mass loss has continued through at least 2016.[8] The ICESat laser altimeter measured surface lowering of the grounded[9] and floating[10][11][12] portions of Totten Glacier from 2003 to 2009; however, longer term observations of the floating ice shelf show interannual variability of thickness[13] and velocity.[14][15][16]

Totten Glacier loses mass primarily through melt at its ice shelf base,[11][12] and melt is influenced by the availability of ocean heat entering the cavity below the ice shelf.[17][18][14][16] Warm, modified Circumpolar deep water enters the Totten Ice Shelf cavity through submarine canyons,[2][19] driven by wind processes at the nearby continental shelf break.[16] Wind processes and sea ice formation along the Sabrina Coast have been linked to variability in Totten Ice Shelf basal melt[17][18] and calving rates.[20][5]

See also

  • Ice stream
  • List of glaciers in the Antarctic
  • List of Antarctic ice streams
  • Retreat of glaciers since 1850

References

1. ^{{cite journal|last1=Roberts | display-authors = etal|first1=Jason|title=Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin and East Antarctica derived by an ice-dynamics-based interpolation scheme|journal=The Cryosphere|date=2011|volume=5| issue = 3|pages=551–560|doi=10.5194/tc-5-551-2011|bibcode=2011TCry....5..551R}}
2. ^{{Cite journal|last=Greenbaum|first=J. S.|last2=Blankenship|first2=D. D.|last3=Young|first3=D. A.|last4=Richter|first4=T. G.|last5=Roberts|first5=J. L.|last6=Aitken|first6=A. R. A.|last7=Legresy|first7=B.|last8=Schroeder|first8=D. M.|last9=Warner|first9=R. C.|date=2015|title=Ocean access to a cavity beneath Totten Glacier in East Antarctica|url=http://www.nature.com/articles/ngeo2388|journal=Nature Geoscience|language=En|volume=8|issue=4|pages=294–298|doi=10.1038/ngeo2388|issn=1752-0908|via=|bibcode=2015NatGe...8..294G}}
3. ^{{Cite journal|last=Greene|first=C. A.|last2=Blankenship|first2=D. D.|date=2018|title=A Method of Repeat Photoclinometry for Detecting Kilometer-Scale Ice Sheet Surface Evolution|url=https://ieeexplore.ieee.org/document/8207763/|journal=IEEE Transactions on Geoscience and Remote Sensing|volume=56|issue=4|pages=2074–2082|doi=10.1109/TGRS.2017.2773364|issn=0196-2892|via=}}
4. ^{{Cite journal|last=Dow|first=Christine F.|last2=Lee|first2=Won Sang|last3=Greenbaum|first3=Jamin S.|last4=Greene|first4=Chad A.|last5=Blankenship|first5=Donald D.|last6=Poinar|first6=Kristin|last7=Forrest|first7=Alexander L.|last8=Young|first8=Duncan A.|last9=Zappa|first9=Christopher J.|date=2018-06-01|title=Basal channels drive active surface hydrology and transverse ice shelf fracture|url=http://advances.sciencemag.org/content/4/6/eaao7212|journal=Science Advances|language=en|volume=4|issue=6|pages=eaao7212|doi=10.1126/sciadv.aao7212|issn=2375-2548|pmc=6007161|pmid=29928691}}
5. ^{{Cite journal|last=Greene|first=Chad A.|last2=Young|first2=Duncan A.|last3=Gwyther|first3=David E.|last4=Galton-Fenzi|first4=Benjamin K.|last5=Blankenship|first5=Donald D.|date=2018-09-06|title=Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing|url=https://www.the-cryosphere.net/12/2869/2018/|journal=The Cryosphere|language=English|volume=12|issue=9|pages=2869–2882|doi=10.5194/tc-12-2869-2018|issn=1994-0416}}
6. ^{{Cite journal|last=Young|first=Duncan A.|last2=Wright|first2=Andrew P.|last3=Roberts|first3=Jason L.|last4=Warner|first4=Roland C.|last5=Young|first5=Neal W.|last6=Greenbaum|first6=Jamin S.|last7=Schroeder|first7=Dustin M.|last8=Holt|first8=John W.|last9=Sugden|first9=David E.|date=2011|title=A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes|journal=Nature|language=En|volume=474|issue=7349|pages=72–75|doi=10.1038/nature10114|pmid=21637255|issn=1476-4687|bibcode=2011Natur.474...72Y}}
7. ^{{cite journal|last1=Rignot|first1=Eric|display-authors=etal|date=2008|title=Recent Antarctic ice mass loss from radar interferometry and regional climate modelling|journal=Nature Geoscience|volume=1|issue=2019|pages=106–110|bibcode=2008NatGe...1..106R|doi=10.1038/ngeo102|pmid=24891394|pmc=4032514}}
8. ^{{Cite web|url=https://data1.geo.tu-dresden.de/ais_gmb/|title=Gravimetric Mass Balance|last=|first=|date=February 7, 2018|website=|archive-url=|archive-date=|dead-url=|access-date=}}
9. ^{{Cite journal|last=Pritchard|first=Hamish D.|last2=Arthern|first2=Robert J.|last3=Vaughan|first3=David G.|last4=Edwards|first4=Laura A.|date=2009|title=Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets|url=http://www.nature.com/articles/nature08471|journal=Nature|language=En|volume=461|issue=7266|pages=971–975|doi=10.1038/nature08471|pmid=19776741|issn=1476-4687|via=|bibcode=2009Natur.461..971P}}
10. ^{{Cite journal|last=Pritchard|first=H. D.|last2=Ligtenberg|first2=S. R. M.|last3=Fricker|first3=H. A.|last4=Vaughan|first4=D. G.|last5=Broeke|first5=M. R. van den|last6=Padman|first6=L.|date=2012|title=Antarctic ice-sheet loss driven by basal melting of ice shelves|journal=Nature|language=En|volume=484|issue=7395|pages=502–505|doi=10.1038/nature10968|pmid=22538614|issn=1476-4687|bibcode=2012Natur.484..502P}}
11. ^{{Cite journal|last=Rignot|first=E.|last2=Jacobs|first2=S.|last3=Mouginot|first3=J.|last4=Scheuchl|first4=B.|date=2013-07-19|title=Ice-Shelf Melting Around Antarctica|url=http://science.sciencemag.org/content/341/6143/266|journal=Science|language=en|volume=341|issue=6143|pages=266–270|doi=10.1126/science.1235798|issn=0036-8075|pmid=23765278|bibcode=2013Sci...341..266R}}
12. ^{{Cite journal|last=Depoorter|first=M. A.|last2=Bamber|first2=J. L.|last3=Griggs|first3=J. A.|last4=Lenaerts|first4=J. T. M.|last5=Ligtenberg|first5=S. R. M.|last6=Broeke|first6=M. R. van den|last7=Moholdt|first7=G.|date=2013|title=Calving fluxes and basal melt rates of Antarctic ice shelves|url=http://www.nature.com/articles/nature12567|journal=Nature|language=En|volume=502|issue=7469|pages=89–92|doi=10.1038/nature12567|pmid=24037377|issn=1476-4687|via=|bibcode=2013Natur.502...89D}}
13. ^{{Cite journal|last=Paolo|first=Fernando S.|last2=Fricker|first2=Helen A.|last3=Padman|first3=Laurie|date=2015-04-17|title=Volume loss from Antarctic ice shelves is accelerating|url=http://science.sciencemag.org/content/348/6232/327|journal=Science|language=en|volume=348|issue=6232|pages=327–331|doi=10.1126/science.aaa0940|issn=0036-8075|pmid=25814064|bibcode=2015Sci...348..327P}}
14. ^{{Cite journal|last=Li|first=Xin|last2=Rignot|first2=Eric|last3=Mouginot|first3=Jeremie|last4=Scheuchl|first4=Bernd|date=2016-06-28|title=Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015|journal=Geophysical Research Letters|language=en|volume=43|issue=12|pages=2016GL069173|doi=10.1002/2016gl069173|issn=1944-8007|bibcode=2016GeoRL..43.6366L}}
15. ^{{Cite journal|last=Roberts|first=Jason|last2=Galton-Fenzi|first2=Benjamin K.|last3=Paolo|first3=Fernando S.|last4=Donnelly|first4=Claire|last5=Gwyther|first5=David E.|last6=Padman|first6=Laurie|last7=Young|first7=Duncan|last8=Warner|first8=Roland|last9=Greenbaum|first9=Jamin|title=Ocean forced variability of Totten Glacier mass loss|journal=Geological Society, London, Special Publications|volume=461|issue=1|pages=175–186|doi=10.1144/sp461.6|bibcode=2018GSLSP.461..175R|year=2018|url=https://eprints.utas.edu.au/25611/1/SP461.6.full.pdf}}
16. ^{{Cite journal|last=Greene|first=Chad A.|last2=Blankenship|first2=Donald D.|last3=Gwyther|first3=David E.|last4=Silvano|first4=Alessandro|last5=Wijk|first5=Esmee van|date=2017-11-01|title=Wind causes Totten Ice Shelf melt and acceleration|url=http://advances.sciencemag.org/content/3/11/e1701681|journal=Science Advances|language=en|volume=3|issue=11|pages=e1701681|doi=10.1126/sciadv.1701681|pmid=29109976|pmc=5665591|issn=2375-2548|bibcode=2017SciA....3E1681G}}
17. ^{{Cite journal|last=Khazendar|first=A.|last2=Schodlok|first2=M. P.|last3=Fenty|first3=I.|last4=Ligtenberg|first4=S. R. M.|last5=Rignot|first5=E.|last6=Broeke|first6=M. R. van den|date=2013-12-05|title=Observed thinning of Totten Glacier is linked to coastal polynya variability|url=https://www.nature.com/articles/ncomms3857|journal=Nature Communications|language=En|volume=4|pages=2857|doi=10.1038/ncomms3857|pmid=24305466|bibcode=2013NatCo...4E2857K}}
18. ^{{Cite journal|last=Gwyther|first=D. E.|last2=Galton-Fenzi|first2=B. K.|last3=Hunter|first3=J. R.|last4=Roberts|first4=J. L.|date=2014-05-06|title=Simulated melt rates for the Totten and Dalton ice shelves|url=https://www.ocean-sci.net/10/267/2014/|journal=Ocean Sci.|volume=10|issue=3|pages=267–279|doi=10.5194/os-10-267-2014|issn=1812-0792|bibcode=2014OcSci..10..267G}}
19. ^{{cite journal|last1=Rintoul|first1=Stephen Rich|last2=Silvano|first2=Alessandro|last3=Pena-Molino|first3=Beatriz|last4=van Wijk|first4=Esmee|last5=Rosenberg|first5=Mark|last6=Greenbaum|first6=Jamin Stevens|last7=Blankenship|first7=Donald D.|date=16 December 2016|title=Ocean heat drives rapid basal melt of the Totten Ice Shelf|url=http://advances.sciencemag.org/content/2/12/e1601610|journal=Science Advances|volume=2|issue=12|doi=10.1126/sciadv.160161|doi-broken-date=2019-03-16}}
20. ^{{Cite journal|last=Miles|first=Bertie W. J.|last2=Stokes|first2=Chris R.|last3=Jamieson|first3=Stewart S. R.|date=2016-05-01|title=Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes|url=http://advances.sciencemag.org/content/2/5/e1501350|journal=Science Advances|language=en|volume=2|issue=5|pages=e1501350|doi=10.1126/sciadv.1501350|pmid=27386519|pmc=4928901|issn=2375-2548|bibcode=2016SciA....2E1350M}}
{{usgs-gazetteer}}{{coord|67|00|S|116|20|E|type:glacier_region:AQ|display=title}}{{Portalbar|Antarctica|Geography}}{{Glaciers}}{{Glaciers in the Antarctic}}{{Glaciers of Wilkes Land}}

2 : Ice streams of Antarctica|Glaciers of Wilkes Land

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 14:35:45