请输入您要查询的百科知识:

 

词条 Truncated triheptagonal tiling
释义

  1. Uniform colorings

  2. Symmetry

  3. Related polyhedra and tilings

  4. See also

  5. References

  6. External links

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U73_012}}

In geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}.

Uniform colorings

There is only one uniform coloring of a truncated triheptagonal tiling. (Naming the colors by indices around a vertex: 123.)

Symmetry

Each triangle in this dual tiling, order 3-7 kisrhombille, represent a fundamental domain of the Wythoff construction for the symmetry group [7,3].

The dual tiling is called an order-3 bisected heptagonal tiling, made as a complete bisection of the heptagonal tiling, here shown with triangles with alternating colors.

Related polyhedra and tilings

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram {{CDD|node_1|p|node_1|3|node_1}}. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

{{Omnitruncated table}}

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

{{Heptagonal tiling table}}

See also

{{Commons category|Uniform tiling 4-6-14}}
  • Tilings of regular polygons
  • List of uniform planar tilings

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

External links

  • {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
  • {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch
{{Tessellation}}{{geometry-stub}}

4 : Hyperbolic tilings|Isogonal tilings|Semiregular tilings|Truncated tilings

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 0:14:16