词条 | Foundation (engineering) | |||||||
释义 |
In engineering, a foundation is the element of a structure which connects it to the ground, and transfers loads from the structure to the ground. Foundations are generally considered either shallow or deep.[1] Foundation engineering is the application of soil mechanics and rock mechanics (Geotechnical engineering) in the design of foundation elements of structures. PurposeFoundations provide the structure's stability from the ground.
Requirements of a Good FoundationThe design and the construction of a well-performing foundation must possess some basic requirements that must not be ignored. They are:
Historic foundation typesEarthfast or post in ground constructionBuildings and structures have a long history of being built with wood in contact with the ground.[2][3] Post in ground construction may technically have no foundation. Timber pilings were used on soft or wet ground even below stone or masonry walls.[4] In marine construction and bridge building a crisscross of timbers or steel beams in concrete is called grillage.[5] PadstonesPerhaps the simplest foundation is the padstone, a single stone which both spreads the weight on the ground and raises the timber off the ground.[6] Staddle stones are a specific type of padstones. Stone foundationsDry stone and stones laid in mortar to build foundations are common in many parts of the world. Dry laid stone foundations may have been painted with mortar after construction. Sometimes the top, visible course of stone is hewn, quarried stones.[7] Besides using mortar, stones can also be put in a gabion.[8] One disadvantage is that if using regular steel rebars, the gabion would last much less long than when using mortar (due to rusting). Using weathering steel rebars could reduce this disadvantage somewhat. Rubble trench foundations{{main|Rubble trench foundation}}Rubble trench foundations are a shallow trench filled with rubble or stones. These foundations extend below the frost line and may have a drain pipe which helps groundwater drain away. They are suitable for soils with a capacity of more than 10 tonnes/m2 (2,000 pounds per square foot). Gallery of shallow foundation typesModern foundation typesShallow foundations{{Main|Shallow foundation}}Shallow foundations, often called footings, are usually embedded about a metre or so into soil. One common type is the spread footing which consists of strips or pads of concrete (or other materials) which extend below the frost line and transfer the weight from walls and columns to the soil or bedrock. Another common type of shallow foundation is the slab-on-grade foundation where the weight of the structure is transferred to the soil through a concrete slab placed at the surface. Slab-on-grade foundations can be reinforced mat slabs, which range from 25 cm to several meters thick, depending on the size of the building, or post-tensioned slabs, which are typically at least 20 cm for houses, and thicker for heavier structures. Deep foundations{{Main|Deep foundation}}A deep foundation is used to transfer the load of a structure down through the upper weak layer of topsoil to the stronger layer of subsoil below. There are different types of deep footings including impact driven piles, drilled shafts, caissons, helical piles, geo-piers and earth stabilized columns. The naming conventions for different types of footings vary between different engineers. Historically, piles were wood, later steel, reinforced concrete, and pre-tensioned concrete. Monopile foundation{{Main|Monopile foundation}}A monopile foundation is a type of deep foundation which uses a single, generally large-diameter, structural element embedded into the earth to support all the loads (weight, wind, etc.) of a large above-surface structure. A large number of monopile foundations[9] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[10] For example, a single wind farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.74-meter-diameter monopile footing in ocean depths up to 16 metres of water.[11] DesignFoundations are designed to have an adequate load capacity depending on the type of subsoil/rock supporting the foundation by a geotechnical engineer, and the footing itself may be designed structurally by a structural engineer. The primary design concerns are settlement and bearing capacity. When considering settlement, total settlement and differential settlement is normally considered. Differential settlement is when one part of a foundation settles more than another part. This can cause problems to the structure which the foundation is supporting. Expansive clay soils can also cause problems. See also
References{{Commons category|Foundations}}1. ^{{citation |last1=Terzaghi |first1=Karl |author1-link=Karl von Terzaghi |last2=Peck |first2=Ralph Brazelton |author2-link=Ralph Brazelton Peck |last3=Mesri |first3=Gholamreza |edition=3rd |title=Soil mechanics in engineering practice |publication-date=1996 |publisher=John Wiley & Sons |publication-place=New York |isbn=0-471-08658-4 |page=386 |url=https://books.google.com/books?id=bAwVvO71FXoC&printsec=frontcover&cad=0#v=onepage&q&f=false}} 2. ^Crabtree, Pam J.. Medieval archaeology: an encyclopedia. New York: Garland Pub., 2001. 113. 3. ^Edwards, Jay Dearborn, and Nicolas Verton. A Creole lexicon architecture, landscape, people. Baton Rouge: Louisiana State University Press, 2004. 92. 4. ^Nicholson, Peter. Practical Masonry, Bricklaying and Plastering, Both Plain and Ornamental. Thomas Kelly: London. 1838. 30–31. 5. ^Beohar, Rakesh Ranjan. Basic Civil Engineering. 2005. 90. {{ISBN|8170087937}} 6. ^Darvill, Timothy. The concise Oxford dictionary of archaeology. 6th ed. [i.e. 2nd ed. Oxford, U.K.: Oxford University Press, 2008. Padstone. {{ISBN|0199534047}} 7. ^Garvin, James L.. A building history of northern New England. Hanover: University Press of New England, 2001. 10. Print. 8. ^Stones in gabion for foundation, done in Diez Casas Para Diez Familias (10x10)'s Casa Rosenda; see Design Like You Give a Damn 2 book by Kate Stohr 9. ^Offshore Wind Turbine Foundations, 2009-09-09, accessed 2010-04-12. 10. ^Constructing a turbine foundation {{webarchive|url=https://web.archive.org/web/20110521095525/http://www.hornsrev.dk/Engelsk/Opstillingen/uk-fundament.htm |date=2011-05-21 }} Horns Rev project, Elsam monopile foundation construction process, accessed 2010-04-12 11. ^{{cite web|url=http://mth.com/Projects/Offshore/LynnInnerDowsing.aspx|title=Lynn & Inner Dowsing Offshore Wind Farms|publisher=MT Højgaard|accessdate=15 September 2016}} External links{{Commons category|Deep foundations}}
5 : Architectural elements|Geotechnical engineering|Articles containing video clips|Foundations (buildings and structures)|Bridge components |
|||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。