请输入您要查询的百科知识:

 

词条 Van Wijngaarden transformation
释义

  1. References

  2. See also

In mathematics and numerical analysis, in order to accelerate convergence of an alternating series, Euler's transform can be computed as follows.

Compute a row of partial sums :

and form rows of averages between neighbors,

The first column then contains the partial sums of the Euler transform.

Adriaan van Wijngaarden's contribution was to point out that it is better not to carry this procedure through to the very end, but to stop two-thirds of the way.[1] If are available, then is almost always a better approximation to the sum than

Leibniz formula for pi, , gives the partial sum , the Euler transform partial sum and the van Wijngaarden result (relative errors are in round brackets).

 1.00000000 0.66666667 0.86666667 0.72380952 0.83492063 0.74401154 0.82093462 0.75426795 0.81309148 0.76045990 0.80807895 0.76460069 '''0.80460069''' 0.83333333 0.76666667 0.79523810 0.77936508 0.78946609 0.78247308 0.78760129 0.78367972 0.78677569 0.78426943 0.78633982 0.78460069  0.80000000 0.78095238 0.78730159 0.78441558 0.78596959 0.78503719 0.78564050 0.78522771 0.78552256 0.78530463 0.78547026  0.79047619 0.78412698 0.78585859 0.78519259 0.78550339 0.78533884 0.78543410 0.78537513 0.78541359 0.78538744  0.78730159 0.78499278 0.78552559 0.78534799 0.78542111 0.78538647 0.78540462 0.78539436 0.78540052  0.78614719 0.78525919 0.78543679 0.78538455 0.78540379 0.78539555 0.78539949 0.78539744  0.78570319 0.78534799 0.78541067 0.78539417 0.78539967 0.78539752 0.78539847  0.78552559 0.78537933 0.78540242 0.78539692 0.78539860 0.78539799  0.78545246 0.78539087 0.78539967 0.78539776 '''0.78539829'''  0.78542166 0.78539527 0.78539871 0.78539803  0.78540847 0.78539699 0.78539837  0.78540273 0.78539768      '''0.78540021''' 

This table results from the J formula 'b11.8'8!:2-:&(}:+}.)^:n+/\\(_1^n)*%1+2*n=.i.13 In many cases the diagonal terms do not converge in one cycle so process of averaging is to be repeated with diagonal terms by bringing them in a row. This will be needed in a geometric series with ratio -4. This process of successive averaging of the average of partial sum can be replaced by using formula to calculate the diagonal term.

References

1. ^A. van Wijngaarden, in: Cursus: Wetenschappelijk Rekenen B, Proces Analyse, Stichting Mathematisch Centrum, (Amsterdam, 1965) pp. 51-60

See also

Euler summation{{DEFAULTSORT:Van Wijngaarden Transformation}}

2 : Mathematical series|Numerical analysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 22:01:55