请输入您要查询的百科知识:

 

词条 FOXP2
释义

  1. Discovery

  2. Function

  3. Clinical Significance

      Language Disorder  

  4. Evolution

  5. Interactions

  6. Mice

  7. Birds

  8. Chimpanzees compared to humans

  9. See also

  10. References

  11. External links

{{Use dmy dates|date=July 2013}}{{Infobox_gene}}

Forkhead box protein P2 (FOXP2) is a protein that, in humans, is encoded by the FOXP2 gene, also known as CAGH44, SPCH1 or TNRC10, and is required for proper development of speech and language.[1] FOXP2 is a transcription factor, meaning that it encodes for a regulatory protein. The gene is shared with many vertebrates, where it generally plays a role in communication (for instance, the development of bird song).

Initially identified as the genetic factor of speech disorder in KE family, FOXP2 is the first gene discovered associated with speech and language.[2] The gene is located on chromosome 7 (7q31, at the SPCH1 locus) and is expressed in fetal and adult brain, heart, lung and gut.[3][4] FOXP2 orthologs[5] have also been identified in other mammals for which complete genome data are available. The FOXP2 protein contains a forkhead-box DNA-binding domain, making it a member of the FOX group of transcription factors, involved in regulation of gene expression. In addition to this characteristic forkhead-box domain, the protein contains a polyglutamine tract, a zinc finger and a leucine zipper. The gene is more active in females than in males, to which could be attributed better language learning in females.[6]

In humans, mutations of FOXP2 cause a severe speech and language disorder.[1][7] Versions of FOXP2 exist in similar forms in distantly related vertebrates; functional studies of the gene in mice[8] and in songbirds[10] indicate that it is important for modulating plasticity of neural circuits.[9] Outside the brain FOXP2 has also been implicated in development of other tissues such as the lung and gut.[12]

FOXP2 is popularly dubbed the "language gene", but this is only partly correct since there are other genes involved in language development.[10] It directly regulates a number of other genes, including CNTNAP2, CTBP1, SRPX2 and SCN3A[11].[12][13]

Two amino acid substitutions distinguish the human FOXP2 protein from that found in chimpanzees,[14] but only one of these changes is unique to humans.[12] Evidence from genetically manipulated mice[19] and human neuronal cell models[15] suggests that these changes affect the neural functions of FOXP2.

Discovery

FOXP2 and its gene were discovered as a result of investigations on an English family known as the KE family, half of whom (fifteen individuals across three generations) suffered from a speech and language disorder called developmental verbal dyspraxia. Their case was studied at the Institute of Child Health of University College London.[16] In 1990 Myrna Gopnik, Professor of Linguistics at McGill University, reported that the disorder-affected KE family had severe speech impediment with incomprehensible talk, largely characterized by grammatical deficits.[17] She hypothesized that the basis was not of learning or cognitive disability, but due to genetic factors affecting mainly grammatical ability.[18] (Her hypothesis led to a popularised existence of "grammar gene" and a controversial notion of grammar-specific disorder.[19][20]) In 1995, the University of Oxford and the Institute of Child Health researchers found that the disorder was purely genetic.[21] Remarkably, the inheritance of the disorder from one generation to the next was consistent with autosomal dominant inheritance, i.e., mutation of only a single gene on an autosome (non-sex chromosome) acting in a dominant fashion. This is one of the few known examples of Mendelian (monogenic) inheritance for a disorder affecting speech and language skills, which typically have a complex basis involving multiple genetic risk factors.[22]

In 1998, Oxford University geneticists Simon Fisher, Anthony Monaco, Cecilia S. L. Lai, Jane A. Hurst, and Faraneh Vargha-Khadem identified an autosomal dominant monogenic inheritance that is localized on a small region of chromosome 7 from DNA samples taken from the affected and unaffected members.[3] The chromosomal region (locus) contained 70 genes.[23] The locus was given the official name "SPCH1" (for speech-and-language-disorder-1) by the Human Genome Nomenclature committee. Mapping and sequencing of the chromosomal region was performed with the aid of bacterial artificial chromosome clones.[4] Around this time, the researchers identified an individual who was unrelated to the KE family, but had a similar type of speech and language disorder. In this case the child, known as CS, carried a chromosomal rearrangement (a translocation) in which part of chromosome 7 had become exchanged with part of chromosome 5. The site of breakage of chromosome 7 was located within the SPCH1 region.[4]

In 2001, the team identified in CS that the mutation is in the middle of a protein-coding gene.[1] Using a combination of bioinformatics and RNA analyses, they discovered that the gene codes for a novel protein belonging to the forkhead-box (FOX) group of transcription factors. As such, it was assigned with the official name of FOXP2. When the researchers sequenced the FOXP2 gene in the KE family, they found a heterozygous point mutation shared by all the affected individuals, but not in unaffected members of the family and other people.[1] This mutation is due to an amino-acid substitution that inhibits the DNA-binding domain of the FOXP2 protein.[24] Further screening of the gene identified multiple additional cases of FOXP2 disruption, including different point mutations[7] and chromosomal rearrangements,[25] providing evidence that damage to one copy of this gene is sufficient to derail speech and language development.

Function

FOXP2 is required for proper brain and lung development. Knockout mice with only one functional copy of the FOXP2 gene have significantly reduced vocalizations as pups.[26] Knockout mice with no functional copies of FOXP2 are runted, display abnormalities in brain regions such as the Purkinje layer, and die an average of 21 days after birth from inadequate lung development.[27]FOXP2 is expressed in many areas of the brain[14] including the basal ganglia and inferior frontal cortex where it is essential for brain maturation and speech and language development.[12]

A knockout mouse model has been used to examine FOXP2's role in brain development and how mutations in the two copies of FOXP2 affect vocalization. Mutations in one copy result in reduced speech while abnormalities in both copies cause major brain and lung developmental issues.[27]

The expression of FOXP2 is subject to post-transcriptional regulation, particularly micro RNA, which binds to multiple miRNA binding-sites in the neocortex, causing the repression of FOXP2 3’UTR.[28]

Clinical Significance

The FOXP2 gene has been implicated in several cognitive functions including; general brain development, language, and synaptic plasticity. The FOXP2 gene region acts as a transcription factor for the forkhead box P2 protein. Transcription factors affect other regions, and the forkhead box P2 protein has been suggested to also act as a transcription factor for hundreds of genes. This prolific involvement opens the possibility that the FOXP2 gene is much more extensive than originally thought. [29] Other targets of transcription have been researched without correlation to FOXP2. Specifically, FOXP2 has been investigated in correlation with autism and dyslexia, however with no mutation was discovered as the cause. [30][31] One well identified target is language. [32] Although some research disagrees with this correlation[33] the majority of research shows that a mutated FOXP2 causes the observed production deficiency. [29] [32] [34][30] [35][36]

There is some evidence that the linguistic impairments associated with a mutation of the FOXP2 gene are not simply the result of a fundamental deficit in motor control. For examples, the impairments include difficulties in comprehension. Brain imaging of affected individuals indicates functional abnormalities in language-related cortical and basal/ganglia regions, demonstrating that the problems extend beyond the motor system.

Mutations in FOXP2 are among several (26 genes plus 2 intergenic) loci which correlate to ADHD diagnosis in adults - clinical ADHD is an umbrella label for a heterogenous group of genetic and neurological phonomena which may result from FOXP2 mutations or other causes [37].

Language Disorder

It is theorized that the translocation of the 7q31.2 region of the FOXP2 gene causes a severe language impairment called Developmental Verbal Dyspraxia (DVD)[38] or Childhood Apraxia of Speech (CAS)[39] So far this type of mutation has only been discovered in three families across the world including the original KE family.[36] A missense mutation causing an arginine-to-histidine substitution (R553H) in the DNA-binding domain is thought to be the abnormality in KE.[40] This would cause a normally basic residue to be fairly acidic and highly reactive at the body's pH. A heterozygous nonsense mutation, R328X variant, produces a truncated protein involved in speech and language difficulties in one KE individual and two of their close family members. R553H and R328X mutations also affected nuclear localization, DNA-binding, and the transactivation (increased gene expression) properties of FOXP2. [41]

These individuals present with deletions, translocations, and missense mutations. When tasked with repetition and verb generation, these individuals with DVD/CAS had decreased activation in the putamen and Broca's area in fMRI studies. These areas are commonly known as areas of language function. [42] This is one of the primary reasons that FOXP2 is known as a language gene. They have delayed onset of speech, difficulty with articulation including, slurred speech, stuttering, and poor pronunciation, as well as dyspraxia.[36] It is believed that a major part of this speech deficit comes from an inability to coordinate of the movements necessary to produce normal speech including mouth and tongue shaping. [38] Additionally, there are more general impairments with the processing of the grammatical and linguistic aspects of speech. [41] These findings suggest that the effects of FOXP2 are not limited to motor control, as they include comprehension among other cognitive language functions. General mild motor and cognitive deficits are noted across the board. [43] Clinically these patients can also have difficulty coughing, sneezing, and/or clearing their throats.  [38]

Evolution

The FOXP2 gene is highly conserved in mammals.[44] The human gene differs from that in non-human primates by the substitution of two amino acids, a threonine to asparagine substitution at position 303 (T303N) and an asparagine to serine substitution at position 325 (N325S).[45] In mice it differs from that of humans by three substitutions, and in zebra finch by seven amino acids.[14][46][47] One of the two amino acid differences between human and chimps also arose independently in carnivores and bats.[27][72] Similar FOXP2 proteins can be found in songbirds, fish, and reptiles such as alligators.[48][49]

DNA sampling from Homo neanderthalensis bones indicates that their FOXP2 gene is a little different, though largely similar to those of Homo sapiens (i.e. humans). [50][51]

The FOXP2 gene showed indications of recent positive selection.[44][52] Some researchers have speculated that positive selection is crucial for the evolution of language in humans.[14] Others, however, have been unable to find a clear association between species with learned vocalizations and similar mutations in FOXP2.[48][49] Recent data from a large sample of globally distributed genomes showed no evidence of positive selection, suggesting that the original signal of positive selection may be driven by sample composition.[53] Insertion of both human mutations into mice, whose version of FOXP2 otherwise differs from the human and chimpanzee versions in only one additional base pair, causes changes in vocalizations as well as other behavioral changes, such as a reduction in exploratory tendencies, and a decrease in maze learning time. A reduction in dopamine levels and changes in the morphology of certain nerve cells are also observed.[19]

However, FOXP2 is extremely diverse in echolocating bats.[54] Twenty-two sequences of non-bat eutherian mammals revealed a total number of 20 nonsynonymous mutations in contrast to half that number of bat sequences, which showed 44 nonsynonymous mutations.[72] All cetaceans share three amino acid substitutions, but no differences were found between echolocating toothed whales and non-echolocating baleen cetaceans.[72] Within bats, however, amino acid variation correlated with different echolocating types.[72]

Interactions

FOXP2 interacts with a regulatory gene CTBP1.[55] It also downregulates CNTNAP2 gene, a member of the neurexin family found in neurons. The target gene is associated with common forms of language impairment.[56] It regulates the repeat-containing protein X-linked 2 (SRPX2), which is an epilepsy and language-associated gene in humans, and sound-controlling gene in mice.[57]

Mice

In a mouse FOXP2 gene knockouts, loss of both copies of the gene caues severe motor impairment related to cerebellar abnormalities and lack of ultrasonic vocalisations normally elicited when pups are removed from their mothers.[26] These vocalizations have important communicative roles in mother-offspring interactions. Loss of one copy was associated with impairment of ultrasonic vocalisations and a modest developmental delay. Male mice on encountering female mice produce complex ultrasonic vocalisations that have characteristics of song.[58] Mice that have the R552H point mutation carried by the KE family show cerebellar reduction and abnormal synaptic plasticity in striatal and cerebellar circuits.[8]

Humanized FOXP2 mice display altered cortico-basal ganglia circuits.[59]

The human allele of the FOXP2 gene was transferred into the mouse embryos through homologous recombination was used to create humanized FOXP2 mice.  The human variant of FOXP2 also had an effect on the exploratory behavior of the mice.  In comparison with how this gene mutation functions in humans, in the humanized mouse model showed opposite effects when testing its effect on the levels of dopamine, plasticity of synapses, patterns of expression in the striatum and behavior that was exploratory in nature.[59]

When FOXP2 expression was altered in mice, it effected many different processes including the learning motor skills and the plasticity of synapses.  It makes sense for the gene to have a role in the processing of sensory inputs because of its effects in the cortical and subcortical regions of the brain such as in the olfactory bulb, auditory and visual circuits as well as in somatosensory regions of the thalamus.  Additionally, FOXP2 is found more in the sixth layer of the cortex than in the fifth so this is consistent with it having greater roles in sensory integration. FOXP2 was also found in the medial geniculate nucleus of the mouse brain which is the processing area that auditory inputs must go through in the thalamus so it was found that its mutations play a role in delaying the development of language learning.  It also makes sense for FOXP2 mutations to have roles in the learning, integrating and outputs of motor functions due to its high expression found in the Purkinje cells and cerebellar nuclei of the Cortico-cerebellar circuits.  High FOXP2 expression has also been shown in the spiny neurons which express type 1 dopamine receptors in the striatum, substantia nigra, subthalamic nucleus and ventral tegmental area.  The negative effects of the mutations of FOXP2 in these brain regions on motor abilities were shown in mice through tasks in lab studies.  When analyzing the brain circuitry in these cases, scientists found greater levels of dopamine and decreased lengths of dendrites which caused defects in long term depression which is implicated in motor function learning and maintenance.  Through EEG studies, it was also found that these mice had increased levels of activity in their striatum which contribute to these results.  There is further evidence for mutations of targets of the FOXP2 gene shown to have roles in schizophrenia, epilepsy, autism, bipolar and intellectual disabilities.  [60]

Birds

In songbirds, FOXP2 most likely regulates genes involved in neuroplasticity.[61][62]

Gene knockdown of FOXP2 in Area X of the basal ganglia in songbirds results in incomplete and inaccurate song imitation.[61] Overexpression of FoxP2 was accomplished through injection of adeno-associated virus serotype 1 (AAV1) into Area X of the brain. This overexpression produced similar effects to that of knockdown; juvenile zebra finch birds were unable to accurately imitate their tutors.[63] Similarly, in adult canaries higher FOXP2 levels also correlate with song changes.[47]

Levels of FOXP2 in adult zebra finches are significantly higher when males direct their song to females than when they sing song in other contexts.[62] “Directed” singing refers to when a male is singing to a female usually for a courtship display. “Undirected” singing occurs when for example, a male sings when other males are present or is alone.[64] Studies have found that FoxP2 levels vary depending on the social context. When the birds were singing undirected song, there was a decrease of FoxP2 expression in Area X. This downregulation was not observed and FoxP2 levels remained stable in birds singing directed song.[65]

Differences between song-learning and non-song-learning birds have been shown to be caused by differences in FOXP2 gene expression, rather than differences in the amino acid sequence of the FOXP2 protein.

FOXP2 also has possible implications in the development of bat echolocation.[45][66][67]

Chimpanzees compared to humans

Chimpanzees were also found to have the FOXP2 gene, however the human version of the gene differs by a mutation change of two amino acids. [68] FOXP2 gene mutation are implicated in a developmental speech disorder that was transmitted through a family with an autosomal dominant inheritance pattern. [69] A study in Germany sequenced FOXP2’s complementary DNA in Chimps and other species to compare it with human complementary DNA in order to find the specific changes in the sequence that have evolved through natural selection.[70] FOXP2 was found to be functionally different in humans compared to chimps and this difference is said to account for the development of structures that allow the human capability of language which chimps lack. Since FOXP2 was also found to have an effect on other genes, its effects on other genes is also being studied.[71] This mutation in the FOXP2 gene present in humans was also found in Neanderthals.[72] The human version of the gene differs from the chimp in their functions and in their appearance, due to the amino acid substitution that has evolved in the version that humans carry.  Since FOXP2 is a transcription factor, it has been found to control other genes which are being studied in their functions in language development. Additionally, there were found different effects onto the targets of the FOXP2 gene in humans in how and whether there was expression of these additional genes.  In this way, it is the FOXP2 gene’s functioning that allows humans to be able to have language but does not allow chimps this same ability. Researchers deduced that this finding could be used to further study other unique human abilities such as higher up cognitive functioning that chimps are not able to exhibit.  There can also be further clinical applications in the direction of these studies in regards to illnesses that show effects on human language ability.[15]

See also

  • Chimpanzee genome project
  • Evolutionary linguistics
  • FOX proteins
  • Origin of language
  • Vocal learning

References

1. ^{{cite journal | vauthors = Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP | title = A forkhead-domain gene is mutated in a severe speech and language disorder | journal = Nature | volume = 413 | issue = 6855 | pages = 519–23 | date = October 2001 | pmid = 11586359 | doi = 10.1038/35097076 }}
2. ^{{cite journal | vauthors = Nudel R, Newbury DF | title = FOXP2 | journal = Wiley Interdisciplinary Reviews. Cognitive Science | volume = 4 | issue = 5 | pages = 547–560 | date = September 2013 | pmid = 24765219 | pmc = 3992897 | doi = 10.1002/wcs.1247 }}
3. ^{{cite journal | vauthors = Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME | title = Localisation of a gene implicated in a severe speech and language disorder | journal = Nature Genetics | volume = 18 | issue = 2 | pages = 168–70 | date = February 1998 | pmid = 9462748 | doi = 10.1038/ng0298-168 }}
4. ^{{cite journal | vauthors = Lai CS, Fisher SE, Hurst JA, Levy ER, Hodgson S, Fox M, Jeremiah S, Povey S, Jamison DC, Green ED, Vargha-Khadem F, Monaco AP | display-authors = 6 | title = The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder | journal = American Journal of Human Genetics | volume = 67 | issue = 2 | pages = 357–68 | date = August 2000 | pmid = 10880297 | pmc = 1287211 | doi = 10.1086/303011 }}
5. ^{{cite web | title = OrthoMaM phylogenetic marker: FOXP2 coding sequence | url = http://www.orthomam.univ-montp2.fr/orthomam/data/cds/detailMarkers/ENSG00000128573_FOXP2.xml }}
6. ^{{cite news|last1=Pennisi|first1=Elizabeth | name-list-format = vanc |title='Language Gene' Has a Partner|url=http://news.sciencemag.org/biology/2013/10/language-gene-has-partner|access-date=30 October 2014|work=Science|date=31 October 2013|ref=pennisi}}
7. ^{{cite journal | vauthors = MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE | display-authors = 6 | title = Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits | journal = American Journal of Human Genetics | volume = 76 | issue = 6 | pages = 1074–80 | date = June 2005 | pmid = 15877281 | pmc = 1196445 | doi = 10.1086/430841 }}
8. ^{{cite journal | vauthors = Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S, Gaub S, Baum MG, French CA, Nicod J, Coventry JA, Enard W, Fray M, Brown SD, Nolan PM, Pääbo S, Channon KM, Costa RM, Eilers J, Ehret G, Rawlins JN, Fisher SE | display-authors = 6 | title = Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits | journal = Current Biology | volume = 18 | issue = 5 | pages = 354–62 | date = March 2008 | pmid = 18328704 | pmc = 2917768 | doi = 10.1016/j.cub.2008.01.060 }}
9. ^{{cite journal | vauthors = Fisher SE, Scharff C | title = FOXP2 as a molecular window into speech and language | journal = Trends in Genetics | volume = 25 | issue = 4 | pages = 166–77 | date = April 2009 | pmid = 19304338 | doi = 10.1016/j.tig.2009.03.002 }}
10. ^{{cite web|last1=Harpaz|first1=Yehouda| name-list-format = vanc |title=Language gene found|url=http://human-brain.org/language-gene.html|website=human-brain.org|access-date=31 October 2014}}
11. ^{{cite journal | vauthors = Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, Hill RS, Shin T, Chen AY, Doan RN, Anttonen AK, Ignatius J, Medne L, Bönnemann CG, Hecht JL, Salonen O, Barkovich AJ, Poduri A, Wilke M, de Wit MC, Mancini GM, Sztriha L, Im K, Amrom D, Andermann E, Paetau R, Lehesjoki AE, Walsh CA, Lehtinen MK | display-authors = 6 | title = Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development | journal = Neuron | volume = 99 | issue = 5 | pages = 905–913.e7 | date = September 2018 | pmid = 30146301 | doi = 10.1016/j.neuron.2018.07.052 }}
12. ^{{cite journal | vauthors = Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH | display-authors = 6 | title = Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain | journal = American Journal of Human Genetics | volume = 81 | issue = 6 | pages = 1144–57 | date = December 2007 | pmid = 17999357 | pmc = 2276350 | doi = 10.1086/522237 }}
13. ^{{cite journal | vauthors = Vernes SC, Spiteri E, Nicod J, Groszer M, Taylor JM, Davies KE, Geschwind DH, Fisher SE | display-authors = 6 | title = High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders | journal = American Journal of Human Genetics | volume = 81 | issue = 6 | pages = 1232–50 | date = December 2007 | pmid = 17999362 | pmc = 2276341 | doi = 10.1086/522238 }}
14. ^{{cite journal | vauthors = Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Pääbo S | display-authors = 6 | title = Molecular evolution of FOXP2, a gene involved in speech and language | journal = Nature | volume = 418 | issue = 6900 | pages = 869–72 | date = August 2002 | pmid = 12192408 | doi = 10.1038/nature01025 }}
15. ^{{cite journal | vauthors = Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, Peng S, Preuss TM, Wohlschlegel JA, Geschwind DH | display-authors = 6 | title = Human-specific transcriptional regulation of CNS development genes by FOXP2 | journal = Nature | volume = 462 | issue = 7270 | pages = 213–7 | date = November 2009 | pmid = 19907493 | pmc = 2778075 | doi = 10.1038/nature08549 | lay-summary = https://www.sciencedaily.com/releases/2009/11/091111130942.htm | lay-source = Science Daily }}
16. ^{{cite journal | vauthors = Hurst JA, Baraitser M, Auger E, Graham F, Norell S | title = An extended family with a dominantly inherited speech disorder | journal = Developmental Medicine and Child Neurology | volume = 32 | issue = 4 | pages = 352–5 | date = April 1990 | pmid = 2332125 | doi = 10.1111/j.1469-8749.1990.tb16948.x }}
17. ^{{cite journal | vauthors = Gopnik M | title = Genetic basis of grammar defect | journal = Nature | volume = 347 | issue = 6288 | pages = 26 | date = September 1990 | pmid = 2395458 | doi = 10.1038/347026a0 }}
18. ^{{cite journal | vauthors = Gopnik M | title = Feature-blind grammar and dysphagia | journal = Nature | volume = 344 | issue = 6268 | pages = 715 | date = April 1990 | pmid = 2330028 | doi = 10.1038/344715a0 }}
19. ^{{cite book|last1=Cowie|first1=Fiona| name-list-format = vanc |title=What's Within?: Nativism Reconsidered|year=1999|publisher=Oxford University Press|location=New York, US|isbn=978-0-1951-5978-3|pages=290–291|url=https://books.google.com/books?id=xb1pvz1JhQYC&dq}}
20. ^{{cite book|last1=Jenkins|first1=Lyle| name-list-format = vanc |title=Biolinguistics: Exploring the Biology of Language|year=2000|publisher=Cambridge University Press|location=Cambridge, UK|isbn=978-0-5210-0391-9|pages=98–99|edition=Revised|url=https://books.google.com/books?id=Z2AN2f6GPFQC&dq}}
21. ^{{cite journal | vauthors = Vargha-Khadem F, Watkins K, Alcock K, Fletcher P, Passingham R | title = Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 92 | issue = 3 | pages = 930–3 | date = January 1995 | pmid = 7846081 | pmc = 42734 | doi = 10.1073/pnas.92.3.930 }}
22. ^{{cite journal | vauthors = Fisher SE, Lai CS, Monaco AP | title = Deciphering the genetic basis of speech and language disorders | journal = Annual Review of Neuroscience | volume = 26 | pages = 57–80 | year = 2003 | pmid = 12524432 | doi = 10.1146/annurev.neuro.26.041002.131144 }}
23. ^{{cite web|title=Genes that are essential for speech|url=http://thebrain.mcgill.ca/flash/d/d_10/d_10_m/d_10_m_lan/d_10_m_lan.html|website=The Brain from Top to Bottom|access-date=31 October 2014}}
24. ^{{cite journal | vauthors = Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N, Coupe AM, Bird LE, Davies KE, Fisher SE | display-authors = 6 | title = Functional genetic analysis of mutations implicated in a human speech and language disorder | journal = Human Molecular Genetics | volume = 15 | issue = 21 | pages = 3154–67 | date = November 2006 | pmid = 16984964 | doi = 10.1093/hmg/ddl392 | url = http://hmg.oxfordjournals.org/cgi/reprint/15/21/3154.pdf }}
25. ^{{cite journal | vauthors = Feuk L, Kalervo A, Lipsanen-Nyman M, Skaug J, Nakabayashi K, Finucane B, Hartung D, Innes M, Kerem B, Nowaczyk MJ, Rivlin J, Roberts W, Senman L, Summers A, Szatmari P, Wong V, Vincent JB, Zeesman S, Osborne LR, Cardy JO, Kere J, Scherer SW, Hannula-Jouppi K | display-authors = 6 | title = Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia | journal = American Journal of Human Genetics | volume = 79 | issue = 5 | pages = 965–72 | date = November 2006 | pmid = 17033973 | pmc = 1698557 | doi = 10.1086/508902 }}
26. ^{{cite journal | vauthors = Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD | display-authors = 6 | title = Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 27 | pages = 9643–8 | date = July 2005 | pmid = 15983371 | pmc = 1160518 | doi = 10.1073/pnas.0503739102 }}
27. ^{{cite journal | vauthors = Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE | title = Foxp2 and Foxp1 cooperatively regulate lung and esophagus development | journal = Development | volume = 134 | issue = 10 | pages = 1991–2000 | date = May 2007 | pmid = 17428829 | doi = 10.1242/dev.02846 }}
28. ^{{cite journal | vauthors = Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D | title = Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons | journal = Development | volume = 139 | issue = 18 | pages = 3332–42 | date = September 2012 | pmid = 22874921 | doi = 10.1242/dev.078063 }}
29. ^{{Cite web|url=https://ghr.nlm.nih.gov/gene/FOXP2|title=FOXP2 gene|last=Reference|first=Genetics Home|website=Genetics Home Reference|language=en|access-date=2019-02-26}}
30. ^{{cite journal | vauthors = Gauthier J, Joober R, Mottron L, Laurent S, Fuchs M, De Kimpe V, Rouleau GA | display-authors = 6 | title = Mutation screening of FOXP2 in individuals diagnosed with autistic disorder | journal = American Journal of Medical Genetics. Part A | volume = 118A | issue = 2 | pages = 172–5 | date = April 2003 | pmid = 12655497 | doi = 10.1002/ajmg.a.10105 }}
31. ^{{cite journal | vauthors = MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE | display-authors = 6 | title = Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits | journal = American Journal of Human Genetics | volume = 76 | issue = 6 | pages = 1074–80 | date = June 2005 | pmid = 15877281 | doi = 10.1086/430841 }}
32. ^{{Cite web|url=https://ghr.nlm.nih.gov/condition/foxp2-related-speech-and-language-disorder|title=FOXP2-related speech and language disorder|last=Reference|first=Genetics Home|website=Genetics Home Reference|language=en|access-date=2019-02-26}}
33. ^{{cite journal | vauthors = Newbury DF, Bonora E, Lamb JA, Fisher SE, Lai CS, Baird G, Jannoun L, Slonims V, Stott CM, Merricks MJ, Bolton PF, Bailey AJ, Monaco AP | display-authors = 6 | title = FOXP2 is not a major susceptibility gene for autism or specific language impairment | journal = American Journal of Human Genetics | volume = 70 | issue = 5 | pages = 1318–27 | date = May 2002 | pmid = 11894222 | doi = 10.1086/339931 }}
34. ^{{cite journal | vauthors = Lennon PA, Cooper ML, Peiffer DA, Gunderson KL, Patel A, Peters S, Cheung SW, Bacino CA | title = Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review | journal = American Journal of Medical Genetics. Part A | volume = 143A | issue = 8 | pages = 791–8 | date = April 2007 | pmid = 17330859 | doi = 10.1002/ajmg.a.31632 }}
35. ^{{Cite journal | vauthors = Rossell S, Tan E, Bozaoglu K, Neill E, Sumner P, Carruthers S, Van Rheenen T, Thomas E, Gurvich C |date=2017|title=Is language Impairment in Schizophrenia related to Language Genes? |journal=European Neuropsychopharmacology |volume=27 |pages=S459–S460 |doi=10.1016/j.euroneuro.2016.09.532 }}
36. ^{{cite journal | vauthors = Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, Stampfer M, Steindl K, Gläser D, Joset P, Krumbiegel M, Rabe H, Schulte-Mattler U, Bauer P, Beck-Wödl S, Kohlhase J, Reis A, Zweier C | display-authors = 6 | title = FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum | journal = Journal of Medical Genetics | volume = 54 | issue = 1 | pages = 64–72 | date = January 2017 | pmid = 27572252 | doi = 10.1136/jmedgenet-2016-104094 }}
37. ^{{cite journal | vauthors = Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, Baldursson G, Belliveau R, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Churchhouse C, Dumont A, Eriksson N, Gandal M, Goldstein JI, Grasby KL, Grove J, Gudmundsson OO, Hansen CS, Hauberg ME, Hollegaard MV, Howrigan DP, Huang H, Maller JB, Martin AR, Martin NG, Moran J, Pallesen J, Palmer DS, Pedersen CB, Pedersen MG, Poterba T, Poulsen JB, Ripke S, Robinson EB, Satterstrom FK, Stefansson H, Stevens C, Turley P, Walters GB, Won H, Wright MJ, Andreassen OA, Asherson P, Burton CL, Boomsma DI, Cormand B, Dalsgaard S, Franke B, Gelernter J, Geschwind D, Hakonarson H, Haavik J, Kranzler HR, Kuntsi J, Langley K, Lesch KP, Middeldorp C, Reif A, Rohde LA, Roussos P, Schachar R, Sklar P, Sonuga-Barke EJ, Sullivan PF, Thapar A, Tung JY, Waldman ID, Medland SE, Stefansson K, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Daly MJ, Faraone SV, Børglum AD, Neale BM | display-authors = 6 | title = Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder | journal = Nature Genetics | volume = 51 | issue = 1 | pages = 63–75 | date = January 2019 | pmid = 30478444 | doi = 10.1038/s41588-018-0269-7 }}
38. ^{{Cite web|url=https://ghr.nlm.nih.gov/condition/foxp2-related-speech-and-language-disorder|title=FOXP2-related speech and language disorder|last=Reference|first=Genetics Home|website=Genetics Home Reference|language=en|access-date=2019-02-26}}
39. ^{{cite journal | vauthors = Morgan A, Fisher SE, Scheffer I, Hildebrand M | title = FOXP2-Related Speech and Language Disorders | veditors = Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A | journal = GenReviews | location = Seattle (WA) |publisher=University of Washington | date = 23 June 2016 | pmid = 27336128 }}
40. ^{{cite journal | vauthors = Preuss TM | title = Human brain evolution: from gene discovery to phenotype discovery | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 109 | issue = Suppl 1 | pages = 10709–16 | date = June 2012 | pmid = 22723367 | doi = 10.1073/pnas.1201894109 }}
41. ^{{cite journal | vauthors = MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE | title = Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits | journal = American Journal of Human Genetics | volume = 76 | issue = 6 | pages = 1074–80 | date = June 2005 | pmid = 15877281 | doi = 10.1086/430841 }}
42. ^{{cite journal | vauthors = Vargha-Khadem F, Gadian DG, Copp A, Mishkin M | title = FOXP2 and the neuroanatomy of speech and language | journal = Nature Reviews. Neuroscience | volume = 6 | issue = 2 | pages = 131–8 | date = February 2005 | pmid = 15685218 | doi = 10.1038/nrn1605 }}
43. ^{{cite journal | vauthors = Lennon PA, Cooper ML, Peiffer DA, Gunderson KL, Patel A, Peters S, Cheung SW, Bacino CA | title = Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review | journal = American Journal of Medical Genetics. Part A | volume = 143A | issue = 8 | pages = 791–8 | date = April 2007 | pmid = 17330859 | doi = 10.1002/ajmg.a.31632 }}
44. ^{{cite journal | vauthors = Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Pääbo S | title = Molecular evolution of FOXP2, a gene involved in speech and language | journal = Nature | volume = 418 | issue = 6900 | pages = 869–72 | date = August 2002 | pmid = 12192408 | doi = 10.1038/nature01025 | url = http://ruccs.rutgers.edu/~karin/550.READINGS/EVOLUTION/Enard2002.pdf | archive-url = https://web.archive.org/web/20060830073732/http://ruccs.rutgers.edu/~karin/550.READINGS/EVOLUTION/Enard2002.pdf | df = dmy | deadurl = yes | archive-date = 30 August 2006 }}
45. ^{{cite journal | vauthors = Preuss TM | title = Human brain evolution: from gene discovery to phenotype discovery | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 109 | issue = Suppl 1 | pages = 10709–16 | date = June 2012 | pmid = 22723367 | pmc = 3386880 | doi = 10.1073/pnas.1201894109 }}
46. ^{{cite journal | vauthors = Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA | title = Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction | journal = The Journal of Neuroscience | volume = 24 | issue = 13 | pages = 3152–63 | date = March 2004 | pmid = 15056695 | doi = 10.1523/JNEUROSCI.5589-03.2004 }}
47. ^{{cite journal | vauthors = Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C | title = FoxP2 expression in avian vocal learners and non-learners | journal = The Journal of Neuroscience | volume = 24 | issue = 13 | pages = 3164–75 | date = March 2004 | pmid = 15056696 | doi = 10.1523/JNEUROSCI.4369-03.2004 }}
48. ^{{cite journal | vauthors = Webb DM, Zhang J | title = FoxP2 in song-learning birds and vocal-learning mammals | journal = The Journal of Heredity | volume = 96 | issue = 3 | pages = 212–6 | year = 2005 | pmid = 15618302 | doi = 10.1093/jhered/esi025 }}
49. ^{{cite journal | vauthors = Scharff C, Haesler S | title = An evolutionary perspective on FoxP2: strictly for the birds? | journal = Current Opinion in Neurobiology | volume = 15 | issue = 6 | pages = 694–703 | date = December 2005 | pmid = 16266802 | doi = 10.1016/j.conb.2005.10.004 }}
50. ^{{cite news |last=Zimmer |first=Carl |authorlink=Carl Zimmer |title=Humans Interbred With Hominins on Multiple Occasions, Study Finds |url=https://www.nytimes.com/2016/03/22/science/neanderthals-interbred-with-humans-denisovans.html |date=17 March 2016 |work=The New York Times |access-date=17 March 2016 }}
51. ^{{cite journal | vauthors = Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, Hublin JJ, Hänni C, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A, Pääbo S | title = The derived FOXP2 variant of modern humans was shared with Neandertals | journal = Current Biology | volume = 17 | issue = 21 | pages = 1908–12 | date = November 2007 | pmid = 17949978 | doi = 10.1016/j.cub.2007.10.008 | laysummary = https://www.nytimes.com/2007/10/19/science/19speech-web.html?ref=world | laydate = 19 October 2007 | laysource = The New York Times }} See also {{cite journal | vauthors = Benítez-Burraco A, Longa VM, Lorenzo G, Uriagereka J | title = Also sprach Neanderthalis... Or Did She? | journal = Biolinguistics | volume = 2 | issue = 2 | pages = 225–232 | date=November 2008| pmid = | doi = | url = http://www.biolinguistics.eu/index.php/biolinguistics/article/view/50/67}}
52. ^{{cite journal | vauthors = Toda M, Okubo S, Ikigai H, Suzuki T, Suzuki Y, Hara Y, Shimamura T | title = The protective activity of tea catechins against experimental infection by Vibrio cholerae O1 | journal = Microbiology and Immunology | volume = 36 | issue = 9 | pages = 999–1001 | year = 1992 | pmid = 1461156 | doi = 10.1111/j.1348-0421.1992.tb02103.x }}
53. ^{{cite journal | vauthors = Atkinson EG, Audesse AJ, Palacios JA, Bobo DM, Webb AE, Ramachandran S, Henn BM | title = No Evidence for Recent Selection at FOXP2 among Diverse Human Populations | journal = Cell | volume = 174 | issue = 6 | pages = 1424–1435.e15 | date = September 2018 | pmid = 30078708 | pmc = 6128738 | doi = 10.1016/j.cell.2018.06.048 }}
54. ^{{cite journal | vauthors = Li G, Wang J, Rossiter SJ, Jones G, Zhang S | title = Accelerated FoxP2 evolution in echolocating bats | journal = PloS One | volume = 2 | issue = 9 | pages = e900 | date = September 2007 | pmid = 17878935 | pmc = 1976393 | doi = 10.1371/journal.pone.0000900 }}
55. ^{{cite journal | vauthors = Li S, Weidenfeld J, Morrisey EE | title = Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions | journal = Molecular and Cellular Biology | volume = 24 | issue = 2 | pages = 809–22 | date = January 2004 | pmid = 14701752 | pmc = 343786 | doi = 10.1128/MCB.24.2.809-822.2004 }}
56. ^{{cite journal | vauthors = Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE | title = A functional genetic link between distinct developmental language disorders | journal = The New England Journal of Medicine | volume = 359 | issue = 22 | pages = 2337–45 | date = November 2008 | pmid = 18987363 | pmc = 2756409 | doi = 10.1056/NEJMoa0802828 }}
57. ^{{cite journal | vauthors = Sia GM, Clem RL, Huganir RL | title = The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice | journal = Science | volume = 342 | issue = 6161 | pages = 987–91 | date = November 2013 | pmid = 24179158 | pmc = 3903157 | doi = 10.1126/science.1245079 }}
58. ^{{cite journal | vauthors = Holy TE, Guo Z | title = Ultrasonic songs of male mice | journal = PLoS Biology | volume = 3 | issue = 12 | pages = e386 | date = December 2005 | pmid = 16248680 | pmc = 1275525 | doi = 10.1371/journal.pbio.0030386 }}
59. ^{{cite journal | vauthors = Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, Brückner MK, Schreiweis C, Winter C, Sohr R, Becker L, Wiebe V, Nickel B, Giger T, Müller U, Groszer M, Adler T, Aguilar A, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Favor J, Fuchs H, Gailus-Durner V, Hans W, Hölzlwimmer G, Javaheri A, Kalaydjiev S, Kallnik M, Kling E, Kunder S, Mossbrugger I, Naton B, Racz I, Rathkolb B, Rozman J, Schrewe A, Busch DH, Graw J, Ivandic B, Klingenspor M, Klopstock T, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, Zimmer A, Fisher SE, Morgenstern R, Arendt T, de Angelis MH, Fischer J, Schwarz J, Pääbo S | display-authors = 6 | title = A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice | journal = Cell | volume = 137 | issue = 5 | pages = 961–71 | date = May 2009 | pmid = 19490899 | doi = 10.1016/j.cell.2009.03.041 }}
60. ^{{cite journal | vauthors = French CA, Fisher SE | title = What can mice tell us about Foxp2 function? | journal = Current Opinion in Neurobiology | volume = 28 | issue = | pages = 72–9 | date = October 2014 | pmid = 25048596 | doi = 10.1016/j.conb.2014.07.003 }}
61. ^{{cite journal | vauthors = Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C | title = Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X | journal = PLoS Biology | volume = 5 | issue = 12 | pages = e321 | date = December 2007 | pmid = 18052609 | pmc = 2100148 | doi = 10.1371/journal.pbio.0050321 }}
62. ^{{cite journal | vauthors = Teramitsu I, White SA | title = FoxP2 regulation during undirected singing in adult songbirds | journal = The Journal of Neuroscience | volume = 26 | issue = 28 | pages = 7390–4 | date = July 2006 | pmid = 16837586 | pmc = 2683919 | doi = 10.1523/JNEUROSCI.1662-06.2006 }}
63. ^{{cite journal | vauthors = Heston JB, White SA | title = Behavior-linked FoxP2 regulation enables zebra finch vocal learning | journal = The Journal of Neuroscience | volume = 35 | issue = 7 | pages = 2885–94 | date = February 2015 | pmid = 25698728 | pmc = 4331621 | doi = 10.1523/JNEUROSCI.3715-14.2015 }}
64. ^{{cite journal | vauthors = Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F | title = For whom the bird sings: context-dependent gene expression | journal = Neuron | volume = 21 | issue = 4 | pages = 775–88 | date = October 1998 | pmid = 9808464 | doi = 10.1016/s0896-6273(00)80594-2 }}
65. ^{{cite journal | vauthors = Teramitsu I, White SA | title = FoxP2 regulation during undirected singing in adult songbirds | journal = The Journal of Neuroscience | volume = 26 | issue = 28 | pages = 7390–4 | date = July 2006 | pmid = 16837586 | pmc = 2683919 | doi = 10.1523/JNEUROSCI.1662-06.2006 }}
66. ^{{cite journal | vauthors = Li G, Wang J, Rossiter SJ, Jones G, Zhang S | title = Accelerated FoxP2 evolution in echolocating bats | journal = PloS One | volume = 2 | issue = 9 | pages = e900 | date = September 2007 | pmid = 17878935 | pmc = 1976393 | doi = 10.1371/journal.pone.0000900 | editor1-last = Ellegren | editor1-first = Hans }}
67. ^{{cite journal | vauthors = Wilbrecht L, Nottebohm F | title = Vocal learning in birds and humans | journal = Mental Retardation and Developmental Disabilities Research Reviews | volume = 9 | issue = 3 | pages = 135–48 | year = 2003 | pmid = 12953292 | doi = 10.1002/mrdd.10073 }}
68. ^{{Cite journal|last=Smith|first=Kerri | name-list-format = vanc |date=2009-11-11|title=Evolution of a single gene linked to language |journal=Nature|doi=10.1038/news.2009.1079|issn=1744-7933}}
69. ^{{cite journal | vauthors = Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP | title = A forkhead-domain gene is mutated in a severe speech and language disorder | journal = Nature | volume = 413 | issue = 6855 | pages = 519–23 | date = October 2001 | pmid = 11586359 | doi = 10.1038/35097076 }}
70. ^{{cite journal | vauthors = Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Pääbo S | title = Molecular evolution of FOXP2, a gene involved in speech and language | journal = Nature | volume = 418 | issue = 6900 | pages = 869–72 | date = August 2002 | pmid = 12192408 | doi = 10.1038/nature01025 }}
71. ^{{Cite news|url=https://www.reuters.com/article/us-humans-speech-idUSTRE5AA3J920091111|title=Why can't chimps talk? It's more than just genes|date=2009-11-11|work=Reuters|access-date=2019-02-21 }}
72. ^{{cite journal | vauthors = Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, Hublin JJ, Hänni C, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A, Pääbo S | title = The derived FOXP2 variant of modern humans was shared with Neandertals | journal = Current Biology | volume = 17 | issue = 21 | pages = 1908–12 | date = November 2007 | pmid = 17949978 | doi = 10.1016/j.cub.2007.10.008 }}

External links

{{Commons category|FOXP2}}
  • [https://www.ncbi.nlm.nih.gov/gene/93986 Gene information at NCBI]
  • Gene information at Genetic Home Reference
  • Language and Genetics Research at the Max Planck Institute for Psycholinguistics
  • [https://web.archive.org/web/20091116190757/http://genome.wellcome.ac.uk/doc_WTD020797.html The FOXP2 story]
  • Revisiting FOXP2 and the origins of language
  • FOXP2 and the Evolution of Language
  • {{FactorBook|FOXP2}}
{{PDB_Gallery|geneid=93986}}{{Transcription factors|g3}}{{Animal communication}}{{DEFAULTSORT:Foxp2}}

4 : Forkhead transcription factors|Evolution of language|Speech and language pathology|Genes on human chromosome 7

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 15:04:49