释义 |
- History
- Goals
- XLDB Community
- XLDB Conferences, Workshops and Tutorials
- Tangible results
- References
- Further reading
- External links
XLDB (eXtremely Large Data Bases) is a yearly conference about data processing. The definition of extremely large refers to data sets that are too big in terms of volume (too much), and/or velocity (too fast), and/of variety (too many places, too many formats) to be handled using conventional solutions. History In October 2007 the XLDB experts gathered at SLAC for the [https://web.archive.org/web/20080417002612/http://www-conf.slac.stanford.edu/xldb07/ First Workshop on Extremely Large Databases]. As a result, the XLDB research community was formed. to meet rapidly growing demands, in addition to the original invitational workshop, an open conference, tutorials, and annual satellite events on different continents were added. The main event, held annually at Stanford gathers over 300 technically savvy attendees. XLDB is one of the premier database events catered towards both academic and industrial communities. Goals The main goals of this community include:[1] - Identify trends, commonalities and major roadblocks related to building extremely large databases
- Bridge the gap between users trying to build extremely large databases and database solution providers worldwide
- Facilitate development and growth of practical technologies for extremely large data stores
XLDB Community As of 2013, the community consisted of about a thousand members including: - Scientists who develop, use, or plan to develop or use XLDB for their research, from laboratories.
- Commercial users of XLDB.
- Providers of database products, including commercial vendors and representatives from open source database communities.
- Academic database researchers.
XLDB Conferences, Workshops and Tutorials The community meets annually at Stanford where the main event is held each fall, usually in September. These who live too far from California to attend have the opportunity to attend satellite events, organized annually around May/June either in Asia or in Europe. A detailed report or videos are produced after each workshop. Year | Place | Link | Report | Comments |
---|
2019 | Stanford | [https://conf.slac.stanford.edu/xldb2019/] | 12th XLDB Conference | 2018 | Stanford | [https://conf.slac.stanford.edu/xldb2018/] | 11th XLDB Conference | 2017 | Clermont-Ferrand | | 10th XLDB Conference | 2016 | Stanford | [https://web.archive.org/web/20150521105100/http://www-conf.slac.stanford.edu/xldb2015/] | 9th XLDB Conference | 2015 | Stanford | [https://web.archive.org/web/20150521105100/http://www-conf.slac.stanford.edu/xldb2015/] | 8th XLDB Conference | 2014 | Observatório Nacional, Rio_de_Janeiro | [https://web.archive.org/web/20150219081443/http://xldb-rio2014.linea.gov.br/] | Satellite XLDB Workshop in South America | 2014 | Stony_Brook_University | [https://web.archive.org/web/20150521052839/http://www3.cs.stonybrook.edu/~xldb/] | XLDB-Healthcare Workshop | 2013 | Stanford | [https://conf-slac.stanford.edu/xldb-2013/] | 7th XLDB Conference | 2013 | CERN, Geneva/Switzerland | [https://archive.is/20130410033807/http://xldb-europe-workshop-2013.web.cern.ch/] | Satellite XLDB Workshop in Europe | 2012 | Stanford | | | 6th XLDB Conference, Workshop & Tutorials | 2012 | Beijing, China | [https://web.archive.org/web/20120708164351/http://idke.ruc.edu.cn/xldb/www.xldb-asia.org/home.html] | | Satellite XLDB Conference in Asia | 2011 | SLAC | [https://web.archive.org/web/20110426125951/http://www-conf.slac.stanford.edu/xldb2011/] | [https://www.jstage.jst.go.jp/article/dsj/11/0/11_012-010/_pdf] | 5th XLDB Conference and Workshop | 2011 | Edinburgh, UK | [https://web.archive.org/web/20160303221547/http://xldb.eu/xldb_europe_2011/] | not available | Satellite XLDB Workshop in Europe | 2010 | SLAC | [https://web.archive.org/web/20110727234052/http://www-conf.slac.stanford.edu/xldb2010/] | [https://www.jstage.jst.go.jp/article/dsj/9/0/9_xldb10/_pdf] | 4th XLDB Conference and Workshop | 2009 | Lyon, France | [https://web.archive.org/web/20110727234623/http://www-conf.slac.stanford.edu/xldb2009/] | [https://www.jstage.jst.go.jp/article/dsj/8/0/8_xldb09/_pdf] | 3rd XLDB Workshop | 2008 | SLAC | [https://web.archive.org/web/20110727234818/http://www-conf.slac.stanford.edu/xldb2008/] | [https://www.jstage.jst.go.jp/article/dsj/7/0/7_7-196/_pdf] | 2nd XLDB Workshop | 2007 | SLAC | [https://web.archive.org/web/20110727235121/http://www-conf.slac.stanford.edu/xldb2007/] | [https://www.jstage.jst.go.jp/article/dsj/7/0/7_becla0223/_pdf] | 1st XLDB Workshop |
Tangible results The XLDB events led to initiating the effort of building a new open source, science database, [https://web.archive.org/web/20090220121225/http://scidb.org/ SciDB].[2] The XLDB organizers started defining a science benchmark for scientific data management systems called SS-DB. At [https://archive.is/20130416124054/http://xldb.org/2012 |XLDB 2012] the XLDB organizers announced that two major databases that support arrays as first-class objects (MonetDB SciQL and SciDB) have formed a working group in conjunction with XLDB. This working group is proposing a common syntax (provisionally named “ArrayQL”) for manipulating arrays, including array creation and query. References 1. ^{{ cite web | url=http://www-conf.slac.stanford.edu/xldb09/docs/xldb09_welcomeTalk.ppt | year=2009 | last=Becla| first=Jacek | title=XLDB 3 Welcome | accessdate=2009-08-29 }} 2. ^{{ cite web | url=http://www.jstage.jst.go.jp/article/dsj/7/0/88/_pdf | year=2008 | last=Becla| first=Jacek | title=Report from the SciDB Workshop |accessdate=2008-09-29}}{{dead link|date=July 2016 |bot=InternetArchiveBot |fix-attempted=yes }}
Further reading - Pavlo A., Paulson E., Rasin A., Abadi D. J., Dewitt D. J., Madden S., and Stonebraker M., A Comparison of Approaches to Large-Scale Data Analysis," Proceedings of the 2009 ACM SIGMOD, https://web.archive.org/web/20090611174944/http://database.cs.brown.edu/sigmod09/benchmarks-sigmod09.pdf
- Becla, J., et al. 2006, Designing a multi-petabyte database for LSST, https://arxiv.org/abs/cs/0604112
- Becla, J., & Wang, D. L. 2005, Lessons Learned from Managing a Petabyte, downloaded from https://web.archive.org/web/20110604223735/http://www.slac.stanford.edu/pubs/slacpubs/10750/slac-pub-10963.pdf on 2007-11-25.
- Bell, G., Gray, J., & Szalay, A. 2005, Petascale computations systems: Balanced cyberinfrastructure in a data-centric world, https://arxiv.org/abs/cs/0701165
- Duellmann, D. 1999, Petabyte Databases, ACM SIGMOD Record, vol. 28, p. 506, https://web.archive.org/web/20071012015357/http://www.sigmod.org/sigmod/record/issues/9906/index.html#TutorialSessions.
- Hanushevsky, A., & Nowak, M. 1999, Pursuit of a Scalable High Performance Multi-Petabyte Database, 16th IEEE Symposium on Mass Storage Systems, pp. 169–175, http://citeseer.ist.psu.edu/217883.html.
- Shiers, J., Building Very Large, Distributed Object Databases, downloaded from https://web.archive.org/web/20070915101842/http://wwwasd.web.cern.ch/wwwasd/cernlib/rd45/papers/dbprog.html on 2007-11-25.
External links 3 : Computer science conferences|Types of databases|Data management |