请输入您要查询的百科知识:

 

词条 Funding of science
释义

  1. History

  2. By country

     United States  Switzerland 

  3. Process

     Public funding  List of research councils  Private funding  Hard money versus soft money 

  4. Influence on research

  5. Efficiency of funding

  6. See also

  7. References

  8. Further reading

  9. External links

{{Refimprove|date=February 2007}}{{Science|phil/hist}}

Research funding is a term generally covering any funding for scientific research, in the areas of both "hard" science and technology and social science. The term often connotes funding obtained through a competitive process, in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations or foundations, allocate scarce funds.

Most research funding comes from two major sources, corporations (through research and development departments) and government (primarily carried out through universities and specialized government agencies; often known as research councils). Some small amounts of scientific research are carried out (or funded) by charitable foundations, especially in relation to developing cures for diseases such as cancer, malaria and AIDS.{{Citation needed|date=September 2012}}

According to OECD, more than 60% of research and development in scientific and technical fields is carried out by industries, and 20% and 10% respectively by universities and government.[1]

Comparatively, in countries with less GDP, such as Portugal and Mexico the industry contribution is significantly lower. The US government spends more than other countries on military R&D, although the proportion has fallen from around 30% in the 1980s to under 20.{{Citation needed|date=August 2012}} Government funding for medical research amounts to approximately 36% in the U.S. The government funding proportion in certain industries is higher, and it dominates research in social science and humanities. Similarly, with some exceptions (e.g. biotechnology) government provides the bulk of the funds for basic scientific research.{{Citation needed|date=January 2013}} In commercial research and development, all but the most research-oriented corporations focus more heavily on near-term commercialization possibilities rather than "blue-sky" ideas or technologies (such as nuclear fusion).[2]

History

{{Main article|History of science policy}}

In the eighteenth and nineteenth centuries, as the pace of technological progress increased before and during the industrial revolution, most scientific and technological research was carried out by individual inventors using their own funds. A system of patents was developed to allow inventors a period of time (often twenty years) to commercialise their inventions and recoup a profit, although in practice many found this difficult. The talents of an inventor are not those of a businessman, and there are many examples of inventors (e.g. Charles Goodyear) making rather little money from their work whilst others were able to market it.{{Citation needed|date=September 2012}}

In the twentieth century, scientific and technological research became increasingly systematised, as corporations developed, and discovered that continuous investment in research and development could be a key element of success in a competitive strategy. It remained the case, however, that imitation by competitors - circumventing or simply flouting patents, especially those registered abroad - was often just as successful a strategy for companies focused on innovation in matters of organisation and production technique, or even in marketing. A classic example is that of Wilkinson Sword and Gillette in the disposable razor market, where the former has typically had the technological edge, and the latter the commercial one.{{Citation needed|date=September 2012}}

By country

{{Main|List of countries by research and development spending}}

Different countries spend vastly different amounts on research, in both absolute and relative terms. For instance, South Korea and Israel spend more than 4% of their GDP on research while many Arabic countries spend less than 1% (e.g. Saudi Arabia 0.25%).[3]

United States

The US spent $456.1 billion for research and development (R&D) in 2013, the most recent year for which such figures are available, according to the National Science Foundation. The private sector accounted for $322.5 billion, or 71%, of total national expenditures, with universities and colleges spending $64.7 billion, or 14%, in second place.[4]

Switzerland

Switzerland spent CHF 22 billion for R&D in 2015 with an increase of 10.5% compared with 2012 when the last survey was conducted.[5] In relative terms, this represents 3.4% of the country's GDP. R&D activities are carried out by nearly 125,000 individuals, mostly in the private sector (71%) and higher education institutions (27%).

Process

Often scientists apply for research funding which a granting agency may (or may not) approve to financially support. These grants require a lengthy process as the granting agency can inquire about the researcher(s)'s background, the facilities used, the equipment needed, the time involved, and the overall potential of the scientific outcome. The process of grant writing and grant proposing is a somewhat delicate process for both the grantor and the grantee: the grantors want to choose the research that best fits their scientific principles, and the individual grantees want to apply for research in which they have the best chances but also in which they can build a body of work towards future scientific endeavors.{{Citation needed|date=September 2012}}

The Engineering and Physical Sciences Research Council in the United Kingdom has devised an alternative method of fund-distribution: the sandpit.[6]

Most universities have research administration offices to facilitate the interaction between the researcher and the granting agency.[7]

"Research administration is all about service—service to our faculty, to our academic units, to the institution, and to our sponsors. To be of service, we first have to know what our customers want and then determine whether or not we are meeting those needs and expectations."[8]

In the United States of America, the National Council of University Research Administrators (NCURA) serves its members and advances the field of research administration through education and professional development programs, the sharing of knowledge and experience, and by fostering a professional, collegial, and respected community.

Public funding

{{Main article|Science policy}}{{see also|Research council|United States national laboratories (disambiguation){{!}}United States national laboratories|Federally funded research and development centers|label 3 = List of federally-funded research and development centers (US)}}

Government-funded research can either be carried out by the government itself, or through grants to researchers outside the government.{{Citation needed|date=September 2012}} The bodies providing public funding are often referred to as research councils.

Critics{{Who|date=December 2014}} of basic research are concerned that research funding for the sake of knowledge itself does not contribute to a great return.{{citation needed|date=December 2015}} However, scientific innovations often foreshadow or inspire further ideas unintentionally. For example, NASA's quest to put a man on the moon inspired them to develop better sound recording and reading technologies. NASA's research was furthered by the music industry, who used it to develop audio cassettes. Audio cassettes, being smaller and able to store more music, quickly dominated the music industry and increased the availability of music.{{Citation needed|date=September 2012}}

An additional distinction of government-sponsored research is that the government does not make a claim to the intellectual property, whereas private research-funding bodies sometimes claim ownership of the intellectual property that they are paying to have developed. Consequently, government-sponsored research more often allows the individual discoverer to file intellectual property claims over their own work.{{Citation needed|date=September 2012}}

List of research councils

Research councils are (usually public) bodies that provide research funding in the form of research grants or scholarships. These include arts councils and research councils for the funding of science.

An incomplete list of national and international pan-disciplinary public research councils:

Name Location
National Scientific and Technical Research CouncilArgentina}}
Australian Research CouncilAustralia}}
Austrian Research Promotion AgencyAustria}}
Research Foundation - Flanders (FWO)Belgium}}
National Research CouncilCanada}}
National Commission for Scientific Research and TechnologyChile}}
National Natural Science Foundation of China, Ministry of Science and TechnologyChina}}
European Research CouncilEuropean Union}}
National Agency for ResearchFrance}}
German Research FoundationGermany}}
Department of Science and TechnologyIndia}}
Irish Research Council, Science Foundation IrelandIreland}}
National Research CouncilItaly}}
National Research and Technology CouncilMexico}}
Netherlands Organisation for Scientific ResearchNetherlands}}
Research Council of NorwayNorway}}
Spanish National Research CouncilSpain}}
National Research Council of Sri LankaSri Lanka}}
Swedish Research CouncilSweden}}
Swiss National Science FoundationSwitzerland}}
National Research Council of ThailandThailand}}
Scientific and Technological Research Council of TurkeyTurkey}}
Research Councils UKUnited Kingdom}}
National Science Foundation, National Institutes of HealthUnited States}}
Danish Agency for Science, Technology and Innovation[9] Denmark
Israel Science Foundation[10] Israel
Netherlands Organisation for Scientific Research Netherlands
Icelandic Centre for Research[11] Iceland
Tekes (Finnish Funding Agency for Technology and Innovation) Finland
Council of Scientific and Industrial Research (India) India
National Research Foundation, Singapore[12] Singapore
National Research Foundation of South Africa South Africa
National Research Foundation of Saudi Arabia Saudi Arabia
Commonwealth Scientific and Industrial Research Organisation Australia
Conselho Nacional de Desenvolvimento Científico e Tecnológico Brazil
Uganda National Council for Science and Technology (UNCST)[13] Uganda
Srpska akademija nauke i umetnosti[14] Serbia

Private funding

Private funding for research comes from philanthropists,[15] crowd-funding,[16] private companies, non-profit foundations, and professional organizations.[16] Philanthropists and foundations have been known to pour millions of dollars into a wide variety of scientific investigations, including basic research discovery, disease cures, particle physics, astronomy, marine science, and the environment.[15] Many large technology companies spend billions of dollars on research and development each year to gain an innovative advantage over their competitors, though only about 42% of this funding goes towards projects that are considered substantially new, or capable of yielding radical breakthroughs.[17] New scientific start-up companies initially seek funding from crowd-funding organizations, venture capitalists, and angel investors, gathering preliminary results using rented facilities,[18] but aim to eventually become self-sufficient.[19][20]

Examples of companies that fund basic research include IBM (high temperature superconductivity was discovered by IBM sponsored basic experimental research in 1986), L'Oreal (which created the L'Oreal-Unesco prize for women scientists and finances internships), AXA (which launched a Research Fund in 2008 and finances Academic Institutions such as advanced fundamental mathematics French Foundation IHES).

A company may share resources with a materials science society to gain proprietary knowledge or trained workers.

Hard money versus soft money

In academic contexts, hard money may refer to funding received from a government or other entity at regular intervals, thus providing a steady inflow of financial resources to the beneficiary. The antonym, soft money, refers to funding provided only through competitive research grants and the writing of grant proposals.[21]

Hard money is usually issued by the government for the advancement of certain projects or for the benefit of specific agencies. Community healthcare, for instance, may be supported by the government by providing hard money. Since funds are disbursed regularly and continuously, the offices in charge of such projects are able to achieve their objectives more effectively than if they had been issued one-time grants.

Individual jobs at a research institute may be classified as "hard-money positions" or "soft-money positions";[21] the former are expected to provide job security because their funding is secure in the long term, whereas individual "soft-money" positions may come and go with fluctuations in the number of grants awarded to the institution.

Influence on research

The source of funding may introduce conscious or unconscious biases into a researcher's work.[22] Disclosure of potential conflicts of interest (COIs) is used by biomedical journals to guarantee credibility and transparency of the scientific process. Conflict of interest disclosure, however, is not systematically nor consistently dealt with by journals which publish scientific research results. When research is funded by the same agency that can be expected to gain from a favorable outcome there is a potential for biased results and research shows that results are indeed more favorable than would be expected from a more objective view of the evidence. A 2003 systematic review studied the scope and impact of industry sponsorship in biomedical research. The researchers found financial relationships among industry, scientific investigators, and academic institutions widespread. Results showed a statistically significant association between industry sponsorship and pro-industry conclusions and concluded that "Conflicts of interest arising from these ties can influence biomedical research in important ways".[23] A British study found that a majority of the members on national and food policy committees receive funding from food companies.[24]

In an effort to cut costs, the pharmaceutical industry has turned to the use of private, nonacademic research groups (i.e., contract research organizations [CROs]) which can do the work for less money than academic investigators. In 2001 CROs came under criticism when the editors of 12 major scientific journals issued a joint editorial, published in each journal, on the control over clinical trials exerted by sponsors, particularly targeting the use of contracts which allow sponsors to review the studies prior to publication and withhold publication of any studies in which their product did poorly. They further criticized the trial methodology stating that researchers are frequently restricted from contributing to the trial design, accessing the raw data, and interpreting the results.[25]

The Cochrane Collaboration, a worldwide group that aims to provide compiled scientific evidence to aid well informed health care decisions, conducts systematic reviews of randomized controlled trials of health care interventions and tries to disseminate the results and conclusions derived from them.[26][27] A few more recent reviews have also studied the results of non-randomized, observational studies. The systematic reviews are published in the Cochrane Library. A 2011 study done to disclose possible conflicts of interests [COI] in underlying research studies used for medical meta-analyses reviewed 29 meta-analyses and found that COIs in the studies underlying the meta-analyses were rarely disclosed. The 29 meta-analyses reviewed an aggregate of 509 randomized controlled trials (RCTs). Of these, 318 RCTs reported funding sources with 219 (69%) industry funded. 132 of the 509 RCTs reported author COI disclosures, with 91 studies (69%) disclosing industry financial ties with one or more authors. The information was, however, seldom reflected in the meta-analyses. Only two (7%) reported RCT funding sources and none reported RCT author-industry ties. The authors concluded "without acknowledgement of COI due to industry funding or author industry financial ties from RCTs included in meta-analyses, readers' understanding and appraisal of the evidence from the meta-analysis may be compromised."[28]

In 2003 researchers looked at the association between authors' published positions on the safety and efficacy in assisting with weight loss of olestra, a fat substitute manufactured by the Procter & Gamble (P&G), and their financial relationships with the food and beverage industry. They found that supportive authors were significantly more likely than critical or neutral authors to have financial relationships with P&G and all authors disclosing an affiliation with P&G were supportive. The authors of the study concluded: "Because authors' published opinions were associated with their financial relationships, obtaining noncommercial funding may be more essential to maintaining objectivity than disclosing personal financial interests."[29]

A 2005 study in the journal Nature[30] surveyed 3247 US researchers who were all publicly funded (by the National Institutes of Health). Out of the scientists questioned, 15.5% admitted to altering design, methodology or results of their studies due to pressure of an external funding source.

A theoretical model has been established whose simulations imply that peer review and over-competitive research funding foster mainstream opinion to monopoly.[31]

Efficiency of funding

Most funding agencies mandate efficient use of their funds, that is, they want to maximize outcome for their money spent. Outcome can be measured by publication output, citation impact, number of patents, number of PhDs awarded etc. Another question is how to allocate funds to different disciplines, institutions, or researchers. A recent study by Wayne Walsh found that “prestigious institutions had on average 65% higher grant application success rates and 50% larger award sizes, whereas less-prestigious institutions produced 65% more publications and had a 35% higher citation impact per dollar of funding.”[32][33]

See also

  • Scientific funding advisory bodies (category)
  • Science policy
  • Industry funding of academic research

References

1. ^{{Cite book|url=http://www.oecd-ilibrary.org/science-and-technology/oecd-science-technology-and-industry-scoreboard-2015_sti_scoreboard-2015-en|title=OECD Science, Technology and Industry Scoreboard 2015: Innovation for growth and society |publisher=OECD |year=2015 |isbn=9789264239784 |location= |pages=156 |doi=10.1787/sti_scoreboard-2015-en |quote=|via=oecd-ilibrary.org|series=OECD Science, Technology and Industry Scoreboard }}
2. ^{{cite journal | last1 = Taylor | first1 = R.A. | year = 2012 | title = Socioeconomic impacts of heat transfer research | url = http://www.sciencedirect.com/science/article/pii/S0735193312002199 | journal = International Communications in Heat and Mass Transfer | volume = 39 | issue = 10| pages = 1467–1473 | doi=10.1016/j.icheatmasstransfer.2012.09.007}}
3. ^{{Cite journal|title=Gross domestic spending on R&D (indicator)|doi=10.1787/d8b068b4-en|url=https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm|accessdate=1 July 2017|date=2017-06-06}}
4. ^{{Cite journal|last=Anonymous|year=2016|title=Microbiology Policy Bulletin Board|url=http://www.asmscience.org/docserver/fulltext/microbe/11/4/microbe_11_4.pdf|journal=Microbe Magazine|volume=11|issue=4|pages=145–148|via=ASM|doi=10.1128/microbe.11.145.1}}
5. ^{{Cite web|title=Recherche et développement en Suisse 2015 (press release)|url=https://www.bfs.admin.ch/bfs/fr/home/actualites/communiques-presse.assetdetail.2422944.html |accessdate=1 July 2017|date=2017-05-29}}
6. ^{{cite news | title = 'Sandpits' bring out worst in 'infantilised' researchers | first = Zoë | last = Corbyn | url = http://www.timeshighereducation.co.uk/story.asp?storycode=407201 | newspaper = Times Higher Education | publisher = TSL Education | date = 2009-07-02 | quote = Sandpits, which were devised by the Engineering and Physical Sciences Research Council, typically involve about 30 selected researchers from different areas who are brought together for several days of intensive discussions about a particular topic. [...] The wheels of such events are oiled with the promise of up to £1 million in funding, which is dished out at the end through a group peer-review process.}}
7. ^Gonzales, Evelina Garza, "External Funding and Tenure at Texas State University-San Marcos" (2009). Texas State University. Applied Research Projects. Paper 315. http://ecommons.txstate.edu/arp/315
8. ^Robert A. Killoren, Jr., Associate Vice President for Research, Office of Sponsored Programs, Penn State U, Fall 2005. From Lowry, Peggy (2006) "Assessing the Sponsored Research Office". SPONSORED RESEARCH ADMINISTRATION: A Guide to Effective Strategies and Recommended Practices
9. ^{{cite web|url=http://fivu.dk/en/|title=Danish Agency for Science, Technology and Innovation}}
10. ^{{cite web|url=http://www.isf.org.il/english/|title=Israel Science Foundation|archiveurl=https://web.archive.org/web/20151216073658/http://www.isf.org.il/English/|archivedate=2015-12-16|deadurl=yes|df=}}
11. ^{{cite web|url=http://rannis.is/english/|title=RANNIS (Icelandic Centre for Research)|website=}}
12. ^{{cite web|url=http://www.nrf.gov.sg/|title=National Research Foundation, Singapore}}
13. ^{{cite web|url=http://www.uncst.go.ug|title=The Uganda National Council for Science and Technology - UNCST}}
14. ^{{Cite web|url=https://www.sanu.ac.rs/|title=Српска академија наука и уметнсти – Званични сајт Српске академије наука и уметности|website=www.sanu.ac.rs|language=sr-RS|access-date=2018-05-31}}
15. ^{{Cite news|url=https://www.nytimes.com/2014/03/16/science/billionaires-with-big-ideas-are-privatizing-american-science.html?_r=0|author=William J. Broad|title=Billionaires With Big Ideas Are Privatizing American Science|publisher=New York Times|accessdate=30 November 2014|date=2014-03-15|newspaper=The New York Times}}
16. ^{{cite web|url=http://www.webguru.neu.edu/undergraduate-research/research-funding/possible-funding-sources|title=Possible Funding Sources}}
17. ^{{cite techreport|url=http://www.strategyand.pwc.com/global/home/what-we-think/reports-white-papers/article-display/2014-global-innovation-1000-study|title=Global Innovation 1000: Proven Paths to Innovation Success|first=B.|last=Jaruzelski|author2=V. Staack|author3=B. Goehle|institution=Strategy&|year=2014|issue=77}}
18. ^{{cite web|url=http://www.sfgate.com/news/article/New-Palo-Alto-lab-for-life-science-startups-5717097.php|title=New Palo Alto lab for life science startups|author=Stephanie M. Lee|date=27 August 2014|work=SFGate}}
19. ^{{cite journal|url=http://www.nature.com/news/finding-philanthropy-like-it-pay-for-it-1.9815|title=Finding philanthropy: Like it? Pay for it|first=Jim|last=Giles|journal=Nature|volume=481|issue=7381|pages=252–253|date=2012|doi=10.1038/481252a|pmid=22258587|bibcode=2012Natur.481..252G}}
20. ^{{cite web|url=http://onstartups.com/tabid/3339/bid/76387/7-Lessons-On-Startup-Funding-From-a-Research-Scientist.aspx|title=7 Lessons On Startup Funding From a Research Scientist|author=Dharmesh Shah}}
21. ^"What is a soft-money research position?", Academia StackExchange
22. ^{{cite web|url=http://undsci.berkeley.edu/article/0_0_0/who_pays|title=Who pays for science?}}
23. ^{{Cite journal|title=Relationship between Funding Source and Conclusion among Nutrition-Related Scientific Articles|volume=4|issue=1|pages=e5|journal=PLOS Medicine|publisher=PLOS|author1=Lenard I Lesser |author2=Cara B Ebbeling |author3=Merrill Goozner |author4=David Wypij |author5=David S Ludwig |doi=10.1371/journal.pmed.0040005|pmid=17214504|pmc=1764435|date=January 9, 2007}}
24. ^{{Cite journal|title=Food company sponsorship of nutrition research and professional activities: a conflict of interest?|volume=4|issue=5|pages=1015–1022|url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=566532|journal=Public Health Nutrition|publisher=Cambridge University Press|accessdate=24 March 2014|author=Marion Nestle|doi=10.1079/PHN2001253|date=October 2001}}
25. ^{{cite journal | pmc = 81460 | pmid=11584570 | volume=165 | issue=6 | title=Sponsorship, authorship and accountability |date=September 2001 | journal=CMAJ | pages=786–8| last1=Davidoff | first1=F | last2=Deangelis | first2=C. D. | last3=Drazen | first3=J. M. | last4=Nicholls | first4=M. G. | last5=Hoey | first5=J | last6=Højgaard | first6=L | last7=Horton | first7=R | last8=Kotzin | first8=S | last9=Nylenna | first9=M | last10=Overbeke | first10=A. J. | last11=Sox | first11=H. C. | last12=Van Der Weyden | first12=M. B. | last13=Wilkes | first13=M. S. }}
26. ^{{cite journal|title=The Cochrane Collaboration|journal=Eur J Clin Nutr|date=August 2005|volume=59|series=Suppl 1|issue=S1|pages=S147–S149|doi=10.1038/sj.ejcn.1602188|url=http://www.nature.com/ejcn/journal/v59/n1s/full/1602188a.html|accessdate=31 January 2012|pmid=16052183|last1=Scholten|first1=R. J.|last2=Clarke|first2=M|last3=Hetherington|first3=J}}
27. ^{{cite web|url=http://www.cochrane.org/|title=Cochrane}}
28. ^{{cite web|title=How Well Do Meta-Analyses Disclose Conflicts of Interests in Underlying Research Studies|url=http://www.cochrane.org/news/blog/how-well-do-meta-analyses-disclose-conflicts-interests-underlying-research-studies|work=The Cochrane Collaboration website|publisher=Cochrane Collaboration|accessdate=24 March 2014|date=2011-06-06}}
29. ^{{cite journal|title=Authors' Financial Relationships With the Food and Beverage Industry and Their Published Positions on the Fat Substitute Olestra| pmc=1447808 | pmid=12660215|volume=93| issue=4 |year=2003|pages=664–9 | last1 = Levine | first1 = J | last2 = Gussow | first2 = JD | last3 = Hastings | first3 = D | last4 = Eccher | first4 = A | doi=10.2105/ajph.93.4.664 | journal=American Journal of Public Health}}
30. ^{{Cite journal|pmid=15944677|year=2005|last1=Martinson|first1=BC|last2=Anderson|first2=MS|last3=De Vries|first3=R|title=Scientists behaving badly|volume=435|issue=7043|pages=737–8|doi=10.1038/435737a|journal=Nature|bibcode=2005Natur.435..737M}}
31. ^{{cite journal | last1 = Fang | first1 = H. | year = 2011 | title = Peer review and over-competitive research funding fostering mainstream opinion to monopoly | url = | journal = Scientometrics | volume = 87 | issue = 2| pages = 293–301 | doi=10.1007/s11192-010-0323-4}}
32. ^{{Cite web|url=https://www.the-scientist.com/news-opinion/research-dollars-go-farther-at-less-prestigious-institutions--study-64529|title=Research Dollars Go Farther at Less-Prestigious Institutions: Study|website=The Scientist Magazine®|language=en|access-date=2018-07-23}}
33. ^{{Cite journal|last=Wahls|first=Wayne P.|date=2018-07-13|title=High cost of bias: Diminishing marginal returns on NIH grant funding to institutions|url=https://www.biorxiv.org/content/early/2018/07/13/367847|journal=bioRxiv|language=en|pages=367847|doi=10.1101/367847}}

Further reading

  • Eisfeld-Reschke, Jörg, Herb, Ulrich, & Wenzlaff, Karsten (2014). Research Funding in Open Science. In S. Bartling & S. Friesike (Eds.), Opening Science (pp. 237–253). Heidelberg: Springer. {{doi|10.1007/978-3-319-00026-8_16}}
  • {{cite news | first=Ulrich | last=Herb | title=Open science's final frontier | url=http://www.researchresearch.com/index.php?option=com_news&template=rr_2col&view=article&articleId=1345626 | publisher=Research Europe Magazine | date=2014-07-31 | accessdate=2014-08-30 }}
  • {{cite journal | last1 = Martinson | first1 = Brian C. | year = 2005 | title = Scientists behaving badly | url = http://www.nature.com/nature/journal/v435/n7043/full/435737a.html | journal = Nature | volume = 435 | issue = 7043| pages = 737–738 | doi=10.1038/435737a | pmid=15944677 | displayauthors = etal | bibcode = 2005Natur.435..737M | last2 = De Vries | first2 = Raymond }}
  • {{cite journal | last1 = Mello | first1 = Michelle M. | year = 2005 | title = Academic Medical Centers' Standards for Clinical-Trial Agreements with Industry | url = | journal = New England Journal of Medicine | volume = 352 | issue = 21| pages = 2202–2210 | doi=10.1056/nejmsa044115| pmid = 15917385 | displayauthors = etal }}
  • {{cite news | first=Andrew | last=Odlyzko | authorlink=Andrew Odlyzko | title=The Decline of Unfettered Research | url=http://www.dtc.umn.edu/~odlyzko/doc/decline.txt | date=1995-10-04 | accessdate=2007-11-02 }}

External links

  • Where to Search for Funding | Science | AAAS, from Science Careers, from the Journal Science.
  • ResearchCrossroads Aggregated funding data from NIH, NSF, private foundations and EU
  • Seventh Framework Programme (2007–2013) The European Unions's programme for funding and promoting research at the European level
  • CORDIS - the official website of the European Unions's programme for funding and promoting research This website contains comprehensive information on research projects already funded.
  • Research Councils UK The portal for the UK-based Research Councils.

3 : Innovation economics|Research|Science in society

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/28 15:23:17