请输入您要查询的百科知识:

 

词条 Zolotarev's lemma
释义

  1. Proof

  2. Another proof

  3. Jacobi symbol

  4. History

  5. References

  6. External links

In number theory, Zolotarev's lemma states that the Legendre symbol

for an integer a modulo an odd prime number p, where p does not divide a, can be computed as the sign of a permutation:

where ε denotes the signature of a permutation and πa is the permutation of the nonzero residue classes mod p induced by multiplication by a.

For example, take a = 2 and p = 7. The nonzero squares mod 7 are 1, 2, and 4, so (2|7) = 1 and (6|7) = −1. Multiplication by 2 on the nonzero numbers mod 7 has the cycle decomposition (1,2,4)(3,6,5), so the sign of this permutation is 1, which is (2|7). Multiplication by 6 on the nonzero numbers mod 7 has cycle decomposition (1,6)(2,5)(3,4), whose sign is −1, which is (6|7).

Proof

In general, for any finite group G of order n, it is straightforward to determine the signature of the permutation πg made by left-multiplication by the element g of G. The permutation πg will be even, unless there are an odd number of orbits of even size. Assuming n even, therefore, the condition for πg to be an odd permutation, when g has order k, is that n/k should be odd, or that the subgroup <g> generated by g should have odd index.

We will apply this to the group of nonzero numbers mod p, which is a cyclic group of order p − 1. The jth power of a primitive root modulo p will by index calculus have index the greatest common divisor

i = (j, p − 1).

The condition for a nonzero number mod p to be a quadratic non-residue is to be an odd power of a primitive root.

The lemma therefore comes down to saying that i is odd when j is odd, which is true a fortiori, and j is odd when i is odd, which is true because p − 1 is even (p is odd).

Another proof

Zolotarev's lemma can be deduced easily from Gauss's lemma and vice versa. The example

,

i.e. the Legendre symbol (a/p) with a = 3 and p = 11, will illustrate how the proof goes. Start with the set {1, 2, . . . , p − 1} arranged as a matrix of two rows such that the sum of the two elements in any column is zero mod p, say:

1 2 3 4 5
10 9 8 7 6

Apply the permutation :

3 6 9 1 4
8 5 2 10 7

The columns still have the property that the sum of two elements in one column is zero mod p. Now apply a permutation V which swaps any pairs in which the upper member was originally a lower member:

3 5 2 1 4
8 6 9 10 7

Finally, apply a permutation W which gets back the original matrix:

1 2 3 4 5
10 9 8 7 6

We have W−1 = VU. Zolotarev's lemma says (a/p) = 1 if and only if the permutation U is even. Gauss's lemma says (a/p) = 1 iff V is even. But W is even, so the two lemmas are equivalent for the given (but arbitrary) a and p.

Jacobi symbol

This interpretation of the Legendre symbol as the sign of a permutation can be extended to the Jacobi symbol

where a and n are relatively prime odd integers with n > 0: a is invertible mod n, so multiplication by a on Z/nZ is a permutation and a generalization of Zolotarev's lemma is that the Jacobi symbol above is the sign of this permutation.

For example, multiplication by 2 on Z/21Z has cycle decomposition (0)(1,2,4,8,16,11)(3,6,12)(5,10,20,19,17,13)(7,14)(9,18,15), so the sign of this permutation is (1)(−1)(1)(−1)(−1)(1) = −1 and the Jacobi symbol (2|21) is −1. (Note that multiplication by 2 on the units mod 21 is a product of two 6-cycles, so its sign is 1. Thus it's important to use all integers mod n and not just the units mod n to define the right permutation.)

When n = p is an odd prime and a is not divisible by p, multiplication by a fixes 0 mod p, so the sign of multiplication by a on all numbers mod p and on the units mod p have the same sign. But for composite n that is not the case, as we see in the example above.

History

This lemma was introduced by Yegor Ivanovich Zolotarev in an 1872 proof of quadratic reciprocity.

{{See also|Gauss's lemma (number theory)|l1=Gauss's lemma}}

References

  • {{cite journal |author=Zolotareff G. |title=Nouvelle démonstration de la loi de réciprocité de Legendre |journal=Nouvelles Annales de Mathématiques|series= 2e série |volume=11 |year=1872 |pages=354–362 |url=http://archive.numdam.org/ARCHIVE/NAM/NAM_1872_2_11_/NAM_1872_2_11__354_0/NAM_1872_2_11__354_0.pdf}}

External links

  • [https://planetmath.org/zolotarevslemma PlanetMath article] on Zolotarev's lemma; includes his proof of quadratic reciprocity

6 : Articles containing proofs|Lemmas|Permutations|Quadratic residue|Squares in number theory|Theorems in number theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 10:12:55