请输入您要查询的百科知识:

 

词条 (−2,3,7) pretzel knot
释义

  1. Mathematical properties

  2. Further reading

  3. External links

{{Infobox knot theory
| name= (−2,3,7) pretzel knot
| practical name=
| image= Pretzel knot.svg
| caption=
| arf invariant= 0
| bridge number=
| crosscap number= 2
| crossing number= 12
| hyperbolic volume= 2.828122088
| linking number=
| stick number=
| unknotting number= 5
| conway_notation= [7;-2 1;2]
| dowker notation= 4, 8, -16, 2, -18, -20, -22, -24, -6, -10, -12, -14
| d-t name= 12n242
| last crossing= 12n241
| last order=  
| next crossing= 12n243
| next order=  
| alternating=
| class= hyperbolic
| fibered= fibered
| pretzel= pretzel
| slice=
| symmetry= reversible
| tricolorable=
}}

In geometric topology, a branch of mathematics, the (−2, 3, 7) pretzel knot, sometimes called the Fintushel–Stern knot (after Ron Fintushel and Ronald J. Stern), is an important example of a pretzel knot which exhibits various interesting phenomena under three-dimensional and four-dimensional surgery constructions.

Mathematical properties

The (−2, 3, 7) pretzel knot has 7 exceptional slopes, Dehn surgery slopes which give non-hyperbolic 3-manifolds. Among the enumerated knots, the only other hyperbolic knot with 7 or more is the figure-eight knot, which has 10. All other hyperbolic knots are conjectured to have at most 6 exceptional slopes.

Further reading

{{refbegin}}
  • Kirby, R., (1978). "Problems in low dimensional topology", Proceedings of Symposia in Pure Math., volume 32, 272-312. (see problem 1.77, due to Gordon, for exceptional slopes)
{{refend}}

External links

  • {{Knot Atlas|K12n242}}
{{Knot theory}}{{DEFAULTSORT:-2,3,7 pretzel knot}}

3 : 3-manifolds|4-manifolds|2.82812 hyperbolic volume knots and links

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 5:31:26