请输入您要查询的百科知识:

 

词条 1.1.1-Propellane
释义

  1. Synthesis

  2. Reactions

      Acetic acid addition    Polymerization  

  3. See also

  4. References

{{correct title|reason=bracket|[1.1.1]Propellane}}{{Chembox
| Verifiedfields = changed
| verifiedrevid = 477208655
| Name=[1.1.1]Propellane
| ImageFileL1 = 1.1.1-propellane.svg
| ImageFileR1 = 1.1.1-propellane.png
| ImageSizeR1 = 150px
| IUPACName = Tricyclo[1.1.1.01,3]pentane
| OtherNames =
|Section1={{Chembox Identifiers
| CASNo = 35634-10-7
| CASNo_Ref = {{cascite|changed|??}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H6/c1-4-2-5(1,4)3-4/h1-3H2
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = ZTXSPLGEGCABFL-UHFFFAOYSA-N
| ChemSpiderID = 125285
| PubChem = 142022
| SMILES = C1(C2)(C3)C23C1}}
|Section2={{Chembox Properties
| C=5 | H=6
| Appearance =
| Density =
| MeltingPt =
| BoilingPt =
| Solubility = }}
|Section3={{Chembox Hazards
| MainHazards =
| FlashPt =
| AutoignitionPt = }}
}}

[1.1.1]Propellane is an organic compound, the simplest member of the propellane family. It is a hydrocarbon with formula C5H6 or C2(CH2)3. The molecular structure consists of three rings of three carbon atoms each, sharing one C–C bond.

[1.1.1]Propellane is a highly strained molecule. The bonds of the two central carbon atoms have an inverted tetrahedral geometry, and the length of the central bond is 160 pm. The strength of that bond is disputed; estimates vary from 59–65 kcal/mol to no strength at all. The energy of the biradical state (with no central bond at all) is calculated to be 80 kcal/mol higher. The compound is highly unstable, and at 114 °C it will spontaneously isomerize to 3-methylidenecyclobutene with a half-life of 5 minutes. Its strain energy is estimated to be 102 kcal/mol (427 kJ/mol). Surprisingly, [1.1.1]propellane is persistent at room temperature and is somewhat less susceptible to thermal decomposition than the less strained (90 kcal/mol) [2.2.2]propellane system, which has an estimated half-life of only about 1 h at 25 °C.[1]

The type of bonding in this molecule has been explained in terms of charge-shift bonding.[2]

Synthesis

[1.1.1]Propellane was first synthesized by K. Wiberg and F. Walker in 1982,[3] according to the following scheme:

Synthesis begins with conversion of the 1,3-di-carboxylic acid of bicyclo[1.1.1]pentane 1 in a Hunsdiecker reaction to the corresponding dibromide 2 followed by a coupling reaction with n-butyllithium. The final product 3 was isolated by column chromatography at −30 °C.

However, a much simplified synthesis was published by Szeimies.[4] It starts with dibromocarbene addition to the alkene bond of 3-chloro-2-(chloromethyl)propene 6 followed by deprotonation by methyllithium and nucleophilic displacements in 7[5] not isolated but kept in solution at −196 °C.

Reactions

Acetic acid addition

[1.1.1]Propellane spontaneously reacts with acetic acid to yield a methylidenecyclobutane ester (4 above).

Polymerization

[1.1.1]Propellane undergoes a polymerization reaction where the central C–C bond is split and connected to adjacent monomer units, resulting the so-called staffanes.[6]

A radical polymerization initiated by methyl formate and benzoyl peroxide results in a distribution of oligomers. An anionic addition polymerization with n-butyllithium results in a fully polymerized product. X-ray diffraction of the polymer shows that the connecting C–C bonds have bond lengths of only 148 pm.

The compound 1,3-dehydroadamantane, which can be viewed as a bridged [1.3.3]propellane, also polymerizes in a similar way.

See also

  • [2.2.2]Propellane
  • Bicyclo(1.1.1)pentane which lacks a bond between the bridgehead carbons.

References

1. ^{{Cite web|url=https://www.thieme.de/shop/Houben-Weyl--SoS/de-Meijere-Butenschoen-Chow-Fitjer-Haufe-Houben-Weyl-Methods-of-Organic-Chemistry-9783131819840/p/000000009583004404|title=Houben-Weyl Methods of Organic Chemistry Vol. E 17e, 4th Edition Supplement (E-Book PDF) - Thieme.de - Thieme Webshop - Armin de Meijere, Holger Butenschön, Hak-Fun Chow, Lutz Fitjer, Günter Haufe|website=Thieme Webshop|language=de|access-date=2017-10-21}}
2. ^{{cite journal|first1=Wei|last1=Wu|first2=Junjing|last2=Gu|first3=Jinshuai|last3=Song|first4=Sason|last4=Shaik|first5=Philippe C.|last5=Hiberty|date=2009|title=The Inverted Bond in [1.1.1]Propellane is a Charge-Shift Bond|journal=Angew. Chem. Int. Ed.|volume=48|pages=1407–1410|doi=10.1002/anie.200804965}}
3. ^{{cite journal|first1=K. B.|last1=Wiberg|first2=F. H.|last2=Walker|date=1982|title=[1.1.1]Propellane|journal=J. Am. Chem. Soc.|volume=104|issue=19|pages=5239–5240|doi=10.1021/ja00383a046}}
4. ^{{cite journal|first1=Johannes|last1=Belzner|first2=Uwe|last2=Bunz|first3=Klaus|last3=Semmler|first4=Günter|last4=Szeimies|first5=Klaus|last5=Opitz|first6=Arnulf-Dieter|last6=Schlüter|displayauthors=etal|title=Concerning the synthesis of [1.1.1]propellane|journal=Chem. Ber.|volume=122|pages=397–398|doi=10.1002/cber.19891220233}}
5. ^{{OrgSynth|title=[1.1.1]Propellane|first1=Kathleen R.|last1=Mondanaro|first2=William P.|last2=Dailey|date=1998|collvol=10|collvolpage=658|volume=75|page=98|prep=v75p0098}}
6. ^{{cite journal|first1=Piotr|last1=Kaszynski|first2=Josef|last2=Michl|date=1988|title=[n]Staffanes: a molecular-size "Tinkertoy" construction set for nanotechnology. Preparation of end-functionalized telomers and a polymer of [1.1.1]propellane|journal=J. Am. Chem. Soc.|volume=110|issue=15|pages=5225–5226|doi=10.1021/ja00223a070}}
{{DEFAULTSORT:Propellane, 1.1.1}}

2 : Cycloalkanes|Tricyclic compounds

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/29 23:30:48