请输入您要查询的百科知识:

 

词条 2 31 polytope
释义

  1. 2_31 polytope

     Alternate names  Construction  Images  Related polytopes and honeycombs 

  2. Rectified 2_31 polytope

     Alternate names  Construction  Images 

  3. See also

  4. Notes

  5. References

{{DISPLAYTITLE:2 31 polytope}}

321
{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

231
{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}

132
{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}

Rectified 321
{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

birectified 321
{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}

Rectified 231
{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}

Rectified 132
{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}
Orthogonal projections in E7 Coxeter plane

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

2_31 polytope

{{Clear}}
Gosset 231 polytope
TypeUniform 7-polytope
Family2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagramnodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
6-faces632:
56 221
576 {35}
5-faces4788:
756 211
4032 {34}
4-faces16128:
4032 201
12096 {33}
Cells20160 {32}
Faces10080 {3}
Edges2016
Vertices126
Vertex figure131
Petrie polygonOctadecagon
Coxeter groupE7, [33,2,1]
Propertiesconvex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube.

Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

Alternate names

  • E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
  • It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[3]

E7{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1k-face fk f0 f1f2f3f4f5f6 k-figures notes
D6 nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|2|nodea_x}} ( ) f0126322406401604806019212326-demicube E7/D6 = 72x8!/32/6! = 126
A5A1 nodea|3a|nodea|3a|nodea|3a|branch|2|nodea_x|2|nodea_1}} { } f12201615602060153066rectified 5-simplex E7/A5A1 = 72x8!/6!/2 = 2016
A3A2A1 nodea|3a|nodea|3a|nodea|2|nodes_x0|2|nodea|3a|nodea_1}} {3} f2331008084126842tetrahedral prism E7/A3A2A1 = 72x8!/4!/3!/2 = 10080
A3A2{{CDD|nodea|3a|nodea|2|nodea_x|2|nodes_0x|3a|nodea|3a|nodea_1}} {3,3} f346420160133331tetrahedron E7/A3A2 = 72x8!/4!/3! = 20160
A4A2{{CDD|nodea|3a|nodea|2|nodea_x|2|branch|3a|nodea|3a|nodea_1}}{3,3,3}f45101054032*3030{3} E7/A4A2 = 72x8!/5!/3! = 4032
A4A1{{CDD|nodea|2|nodea_x|2|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}}510105*120961221Isosceles triangle E7/A4A1 = 72x8!/5!/2 = 12096
D5A1{{CDD|nodea|2|nodea_x|2|nodea|3a|branch|3a|nodea|3a|nodea_1}} {3,3,3,4}f5104080801616756*20{ } E7/D5A1 = 72x8!/32/5! = 756
A5{{CDD|nodea_x|2|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}} {3,3,3,3}615201506*403211 E7/A5 = 72x8!/6! = 72*8*7 = 4032
E6{{CDD|nodea_x|2|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} {3,3,32,1}f6272167201080216432277256*( ) E7/E6 = 72x8!/72x6! = 8*7 = 56
A6{{CDD|nodea|3a|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}} {3,3,3,3,3}721353502107*576 E7/A6 = 72x8!/7! = 72×8 = 576

Images

Coxeter plane projections
E7E6 / F4B6 / A6

[18]

[12]

[7x2]
A5D7 / B6D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4D4 / B3 / A2 / G2D3 / B2 / A3

[8]

[6]

[4]

Related polytopes and honeycombs

{{2 k1 polytopes}}

Rectified 2_31 polytope

Rectified 231 polytope
TypeUniform 7-polytope
Family2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagramnodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
6-faces758
5-faces10332
4-faces47880
Cells100800
Faces90720
Edges30240
Vertices2016
Vertex figure6-demicube
Petrie polygonOctadecagon
Coxeter groupE7, [33,2,1]
Propertiesconvex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

Alternate names

  • Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[4]

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the short branch leaves the rectified 6-simplex, {{CDD|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the end of the 2-length branch leaves the, 6-demicube,

{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the end of the 3-length branch leaves the rectified 221, {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}.

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

{{CDD|nodea_1|2|branch_10|3a|nodea|3a|nodea|3a|nodea}}

Images

Coxeter plane projections
E7E6 / F4B6 / A6

[18]

[12]

[7x2]
A5D7 / B6D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4D4 / B3 / A2 / G2D3 / B2 / A3

[8]

[6]

[4]

See also

  • List of E7 polytopes

Notes

1. ^Elte, 1912
2. ^Klitzing, (x3o3o3o *c3o3o3o - laq)
3. ^Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
4. ^Klitzing, (o3x3o3o *c3o3o3o - rolaq)

References

  • {{citation | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912}}
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3o3o3o c3o3o3o - laq, o3x3o3o c3o3o3o - rolaq
{{Polytopes}}

1 : 7-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 23:24:17