释义 |
- 2_31 polytope Alternate names Construction Images Related polytopes and honeycombs
- Rectified 2_31 polytope Alternate names Construction Images
- See also
- Notes
- References
{{DISPLAYTITLE:2 31 polytope}} 321 {{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}} | 231 {{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} | 132 {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}} | Rectified 321 {{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}} | birectified 321 {{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}} | Rectified 231 {{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}} | Rectified 132 {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}} | Orthogonal projections in E7 Coxeter plane |
---|
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch. The rectified 231 is constructed by points at the mid-edges of the 231. These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}. 2_31 polytope{{Clear}}Gosset 231 polytope | Type | Uniform 7-polytope | Family | 2k1 polytope | Schläfli symbol | {3,3,33,1} | Coxeter symbol | 231 | Coxeter diagram | nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}} | 6-faces | 632: 56 221 576 {35} | 5-faces | 4788: 756 211 4032 {34} | 4-faces | 16128: 4032 201 12096 {33} | Cells | 20160 {32} | Faces | 10080 {3} | Edges | 2016 | Vertices | 126 | Vertex figure | 131
| Petrie polygon | Octadecagon | Coxeter group | E7, [33,2,1] | Properties | convex |
The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7. This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331. Alternate names- E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
- It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
- Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]
ConstructionIt is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram, {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}. Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}. Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}. The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}. Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[3] E7 | {{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | k-figures | notes | D6 | nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|2|nodea_x}} | ( ) | f0 | 126 | 32 | 240 | 640 | 160 | 480 | 60 | 192 | 12 | 32 | 6-demicube | E7/D6 = 72x8!/32/6! = 126 |
---|
A5A1 | nodea|3a|nodea|3a|nodea|3a|branch|2|nodea_x|2|nodea_1}} | { } | f1 | 2 | 2016 | 15 | 60 | 20 | 60 | 15 | 30 | 6 | 6 | rectified 5-simplex | E7/A5A1 = 72x8!/6!/2 = 2016 |
---|
A3A2A1 | nodea|3a|nodea|3a|nodea|2|nodes_x0|2|nodea|3a|nodea_1}} | {3} | f2 | 3 | 3 | 10080 | 8 | 4 | 12 | 6 | 8 | 4 | 2 | tetrahedral prism | E7/A3A2A1 = 72x8!/4!/3!/2 = 10080 |
---|
A3A2 | {{CDD|nodea|3a|nodea|2|nodea_x|2|nodes_0x|3a|nodea|3a|nodea_1}} | {3,3} | f3 | 4 | 6 | 4 | 20160 | 1 | 3 | 3 | 3 | 3 | 1 | tetrahedron | E7/A3A2 = 72x8!/4!/3! = 20160 |
---|
A4A2 | {{CDD|nodea|3a|nodea|2|nodea_x|2|branch|3a|nodea|3a|nodea_1}} | {3,3,3} | f4 | 5 | 10 | 10 | 5 | 4032 | * | 3 | 0 | 3 | 0 | {3} | E7/A4A2 = 72x8!/5!/3! = 4032 |
---|
A4A1 | {{CDD|nodea|2|nodea_x|2|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}} | 5 | 10 | 10 | 5 | * | 12096 | 1 | 2 | 2 | 1 | Isosceles triangle | E7/A4A1 = 72x8!/5!/2 = 12096 | D5A1 | {{CDD|nodea|2|nodea_x|2|nodea|3a|branch|3a|nodea|3a|nodea_1}} | {3,3,3,4} | f5 | 10 | 40 | 80 | 80 | 16 | 16 | 756 | * | 2 | 0 | { } | E7/D5A1 = 72x8!/32/5! = 756 |
---|
A5 | {{CDD|nodea_x|2|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}} | {3,3,3,3} | 6 | 15 | 20 | 15 | 0 | 6 | * | 4032 | 1 | 1 | E7/A5 = 72x8!/6! = 72*8*7 = 4032 | E6 | {{CDD|nodea_x|2|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} | {3,3,32,1} | f6 | 27 | 216 | 720 | 1080 | 216 | 432 | 27 | 72 | 56 | * | ( ) | E7/E6 = 72x8!/72x6! = 8*7 = 56 |
---|
A6 | {{CDD|nodea|3a|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}} | {3,3,3,3,3} | 7 | 21 | 35 | 35 | 0 | 21 | 0 | 7 | * | 576 | E7/A6 = 72x8!/7! = 72×8 = 576 |
Images Coxeter plane projectionsE7 | E6 / F4 | B6 / A6 |
---|
[18] | [12] | [7x2] | A5 | D7 / B6 | D6 / B5 |
---|
[6] | [12/2] | [10] | D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
---|
[8] | [6] | [4] | Related polytopes and honeycombs{{2 k1 polytopes}}Rectified 2_31 polytopeRectified 231 polytope | Type | Uniform 7-polytope | Family | 2k1 polytope | Schläfli symbol | {3,3,33,1} | Coxeter symbol | t1(231) | Coxeter diagram | nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}} | 6-faces | 758 | 5-faces | 10332 | 4-faces | 47880 | Cells | 100800 | Faces | 90720 | Edges | 30240 | Vertices | 2016 | Vertex figure | 6-demicube | Petrie polygon | Octadecagon | Coxeter group | E7, [33,2,1] | Properties | convex |
The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231. Alternate names- Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[4]
ConstructionIt is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram, {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}. Removing the node on the short branch leaves the rectified 6-simplex, {{CDD|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}. Removing the node on the end of the 2-length branch leaves the, 6-demicube, {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.Removing the node on the end of the 3-length branch leaves the rectified 221, {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}. The vertex figure is determined by removing the ringed node and ringing the neighboring node. {{CDD|nodea_1|2|branch_10|3a|nodea|3a|nodea|3a|nodea}} Images Coxeter plane projectionsE7 | E6 / F4 | B6 / A6 |
---|
[18] | [12] | [7x2] | A5 | D7 / B6 | D6 / B5 |
---|
[6] | [12/2] | [10] | D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
---|
[8] | [6] | [4] | See alsoNotes1. ^Elte, 1912 2. ^Klitzing, (x3o3o3o *c3o3o3o - laq) 3. ^Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203 4. ^Klitzing, (o3x3o3o *c3o3o3o - rolaq)
References- {{citation | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912}}
- H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3o3o3o c3o3o3o - laq, o3x3o3o c3o3o3o - rolaq
{{Polytopes}} 1 : 7-polytopes |