请输入您要查询的百科知识:

 

词条 A6 polytope
释义

  1. Graphs

  2. References

  3. External links

  4. Notes

{{DISPLAYTITLE:A6 polytope}}
Orthographic projections
A6 Coxeter plane
6-simplex
{{CDD>nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

In 6-dimensional geometry, there are 35 uniform polytopes with A6 symmetry. There is one self-dual regular form, the 6-simplex with 7 vertices.

Each can be visualized as symmetric orthographic projections in Coxeter planes of the A6 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projections of these 35 polytopes can be made in the A6, A5, A4, A3, A2 Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetric ringed diagrams, symmetry doubles to [2(k+1)].

These 35 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

#A6
[7]
A5
[6]
A4
[5]
A3
[4]
A2
[3]
Coxeter-Dynkin diagram
Schläfli symbol
Name
1node|3|node|3|node|3|node|3|node|3|node_1}}
t0{3,3,3,3,3}
6-simplex
Heptapeton (hop)
2node|3|node|3|node|3|node|3|node_1|3|node}}
t1{3,3,3,3,3}
Rectified 6-simplex
Rectified heptapeton (ril)
3node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1{3,3,3,3,3}
Truncated 6-simplex
Truncated heptapeton (til)
4node|3|node|3|node|3|node_1|3|node|3|node}}
t2{3,3,3,3,3}
Birectified 6-simplex
Birectified heptapeton (bril)
5node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2{3,3,3,3,3}
Cantellated 6-simplex
Small rhombated heptapeton (sril)
6node|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2{3,3,3,3,3}
Bitruncated 6-simplex
Bitruncated heptapeton (batal)
7node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2{3,3,3,3,3}
Cantitruncated 6-simplex
Great rhombated heptapeton (gril)
8node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3{3,3,3,3,3}
Runcinated 6-simplex
Small prismated heptapeton (spil)
9node|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3{3,3,3,3,3}
Bicantellated 6-simplex
Small birhombated heptapeton (sabril)
10node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3{3,3,3,3,3}
Runcitruncated 6-simplex
Prismatotruncated heptapeton (patal)
11node|3|node|3|node_1|3|node_1|3|node|3|node}}
t2,3{3,3,3,3,3}
Tritruncated 6-simplex
Tetradecapeton (fe)
12node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3{3,3,3,3,3}
Runcicantellated 6-simplex
Prismatorhombated heptapeton (pril)
13node|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3{3,3,3,3,3}
Bicantitruncated 6-simplex
Great birhombated heptapeton (gabril)
14node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3{3,3,3,3,3}
Runcicantitruncated 6-simplex
Great prismated heptapeton (gapil)
15node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4{3,3,3,3,3}
Stericated 6-simplex
Small cellated heptapeton (scal)
16node|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,4{3,3,3,3,3}
Biruncinated 6-simplex
Small biprismato-tetradecapeton (sibpof)
17node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4{3,3,3,3,3}
Steritruncated 6-simplex
cellitruncated heptapeton (catal)
18node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4{3,3,3,3,3}
Stericantellated 6-simplex
Cellirhombated heptapeton (cral)
19node|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4{3,3,3,3,3}
Biruncitruncated 6-simplex
Biprismatorhombated heptapeton (bapril)
20node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4{3,3,3,3,3}
Stericantitruncated 6-simplex
Celligreatorhombated heptapeton (cagral)
21node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4{3,3,3,3,3}
Steriruncinated 6-simplex
Celliprismated heptapeton (copal)
22node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4{3,3,3,3,3}
Steriruncitruncated 6-simplex
celliprismatotruncated heptapeton (captal)
23node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4{3,3,3,3,3}
Steriruncicantellated 6-simplex
celliprismatorhombated heptapeton (copril)
24node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4{3,3,3,3,3}
Biruncicantitruncated 6-simplex
Great biprismato-tetradecapeton (gibpof)
25node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4{3,3,3,3,3}
Steriruncicantitruncated 6-simplex
Great cellated heptapeton (gacal)
26node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5{3,3,3,3,3}
Pentellated 6-simplex
Small teri-tetradecapeton (staf)
27node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5{3,3,3,3,3}
Pentitruncated 6-simplex
Tericellated heptapeton (tocal)
28node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,5{3,3,3,3,3}
Penticantellated 6-simplex
Teriprismated heptapeton (tapal)
29node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5{3,3,3,3,3}
Penticantitruncated 6-simplex
Terigreatorhombated heptapeton (togral)
30node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5{3,3,3,3,3}
Pentiruncitruncated 6-simplex
Tericellirhombated heptapeton (tocral)
31node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,5{3,3,3,3,3}
Pentiruncicantellated 6-simplex
Teriprismatorhombi-tetradecapeton (taporf)
32node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5{3,3,3,3,3}
Pentiruncicantitruncated 6-simplex
Terigreatoprismated heptapeton (tagopal)
33node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,5{3,3,3,3,3}
Pentisteritruncated 6-simplex
tericellitrunki-tetradecapeton (tactaf)
34node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5{3,3,3,3,3}
Pentistericantitruncated 6-simplex
tericelligreatorhombated heptapeton (tacogral)
35node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5{3,3,3,3,3}
Omnitruncated 6-simplex
Great teri-tetradecapeton (gotaf)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

  • {{KlitzingPolytopes|polypeta.htm|6D|uniform polytopes (polypeta)}}

Notes

1. ^Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
{{Polytopes}}

1 : 6-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 23:10:53