释义 |
- Graphs
- References
- External links
- Notes
{{DISPLAYTITLE:A8 polytope}} Orthographic projections A8 Coxeter plane8-simplex {{CDD>node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} | In 8-dimensional geometry, there are 135 uniform polytopes with A8 symmetry. There is one self-dual regular form, the 8-simplex with 9 vertices. Each can be visualized as symmetric orthographic projections in Coxeter planes of the A8 Coxeter group, and other subgroups. GraphsSymmetric orthographic projections of these 135 polytopes can be made in the A8, A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has [k+1] symmetry. These 135 polytopes are each shown in these 7 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position. # | Coxeter-Dynkin diagram Schläfli symbol Johnson name | Ak orthogonal projection graphs | A8 [9] | A7 [8] | A6 [7] | A5 [6] | A4 [5] | A3 [4] | A2 [3] |
---|
1 | node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}} t0{3,3,3,3,3,3,3} 8-simplex |
---|
2 | node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}} t1{3,3,3,3,3,3,3} Rectified 8-simplex |
---|
3 | node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}} t2{3,3,3,3,3,3,3} Birectified 8-simplex |
---|
4 | node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}} t3{3,3,3,3,3,3,3} Trirectified 8-simplex |
---|
5 | node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1{3,3,3,3,3,3,3} Truncated 8-simplex |
---|
6 | node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2{3,3,3,3,3,3,3} Cantellated 8-simplex |
---|
7 | node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node}} t1,2{3,3,3,3,3,3,3} Bitruncated 8-simplex |
---|
8 | node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}} t0,3{3,3,3,3,3,3,3} Runcinated 8-simplex |
---|
9 | node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node}} t1,3{3,3,3,3,3,3,3} Bicantellated 8-simplex |
---|
10 | node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node}} t2,3{3,3,3,3,3,3,3} Tritruncated 8-simplex |
---|
11 | node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1}} t0,4{3,3,3,3,3,3,3} Stericated 8-simplex |
---|
12 | node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node}} t1,4{3,3,3,3,3,3,3} Biruncinated 8-simplex |
---|
13 | node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}} t2,4{3,3,3,3,3,3,3} Tricantellated 8-simplex |
---|
14 | node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}} t3,4{3,3,3,3,3,3,3} Quadritruncated 8-simplex |
---|
15 | node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1}} t0,5{3,3,3,3,3,3,3} Pentellated 8-simplex |
---|
16 | node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}} t1,5{3,3,3,3,3,3,3} Bistericated 8-simplex |
---|
17 | node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}} t2,5{3,3,3,3,3,3,3} Triruncinated 8-simplex |
---|
18 | node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}} t0,6{3,3,3,3,3,3,3} Hexicated 8-simplex |
---|
19 | node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node}} t1,6{3,3,3,3,3,3,3} Bipentellated 8-simplex |
---|
20 | node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}} t0,7{3,3,3,3,3,3,3} Heptellated 8-simplex |
---|
21 | node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2{3,3,3,3,3,3,3} Cantitruncated 8-simplex |
---|
22 | node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3{3,3,3,3,3,3,3} Runcitruncated 8-simplex |
---|
23 | node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3{3,3,3,3,3,3,3} Runcicantellated 8-simplex |
---|
24 | node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3{3,3,3,3,3,3,3} Bicantitruncated 8-simplex |
---|
25 | node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4{3,3,3,3,3,3,3} Steritruncated 8-simplex |
---|
26 | node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} t0,2,4{3,3,3,3,3,3,3} Stericantellated 8-simplex |
---|
27 | node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} t1,2,4{3,3,3,3,3,3,3} Biruncitruncated 8-simplex |
---|
28 | node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} t0,3,4{3,3,3,3,3,3,3} Steriruncinated 8-simplex |
---|
29 | node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} t1,3,4{3,3,3,3,3,3,3} Biruncicantellated 8-simplex |
---|
30 | node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} t2,3,4{3,3,3,3,3,3,3} Tricantitruncated 8-simplex |
---|
31 | node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,5{3,3,3,3,3,3,3} Pentitruncated 8-simplex |
---|
32 | node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2,5{3,3,3,3,3,3,3} Penticantellated 8-simplex |
---|
33 | node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}} t1,2,5{3,3,3,3,3,3,3} Bisteritruncated 8-simplex |
---|
34 | node|3|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}} t0,3,5{3,3,3,3,3,3,3} Pentiruncinated 8-simplex |
---|
35 | node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}} t1,3,5{3,3,3,3,3,3,3} Bistericantellated 8-simplex |
---|
36 | node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}} t2,3,5{3,3,3,3,3,3,3} Triruncitruncated 8-simplex |
---|
37 | node|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}} t0,4,5{3,3,3,3,3,3,3} Pentistericated 8-simplex |
---|
38 | node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node}} t1,4,5{3,3,3,3,3,3,3} Bisteriruncinated 8-simplex |
---|
39 | node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,6{3,3,3,3,3,3,3} Hexitruncated 8-simplex |
---|
40 | node|3|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2,6{3,3,3,3,3,3,3} Hexicantellated 8-simplex |
---|
41 | node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node}} t1,2,6{3,3,3,3,3,3,3} Bipentitruncated 8-simplex |
---|
42 | node|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1}} t0,3,6{3,3,3,3,3,3,3} Hexiruncinated 8-simplex |
---|
43 | node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node}} t1,3,6{3,3,3,3,3,3,3} Bipenticantellated 8-simplex |
---|
44 | node|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1}} t0,4,6{3,3,3,3,3,3,3} Hexistericated 8-simplex |
---|
45 | node|3|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1}} t0,5,6{3,3,3,3,3,3,3} Hexipentellated 8-simplex |
---|
46 | node_1|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,7{3,3,3,3,3,3,3} Heptitruncated 8-simplex |
---|
47 | node_1|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2,7{3,3,3,3,3,3,3} Hepticantellated 8-simplex |
---|
48 | node_1|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}} t0,3,7{3,3,3,3,3,3,3} Heptiruncinated 8-simplex |
---|
49 | node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3{3,3,3,3,3,3,3} Runcicantitruncated 8-simplex |
---|
50 | node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4{3,3,3,3,3,3,3} Stericantitruncated 8-simplex |
---|
51 | node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4{3,3,3,3,3,3,3} Steriruncitruncated 8-simplex |
---|
52 | node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4{3,3,3,3,3,3,3} Steriruncicantellated 8-simplex |
---|
53 | node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,4{3,3,3,3,3,3,3} Biruncicantitruncated 8-simplex |
---|
54 | node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,5{3,3,3,3,3,3,3} Penticantitruncated 8-simplex |
---|
55 | node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,5{3,3,3,3,3,3,3} Pentiruncitruncated 8-simplex |
---|
56 | node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,5{3,3,3,3,3,3,3} Pentiruncicantellated 8-simplex |
---|
57 | node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,5{3,3,3,3,3,3,3} Bistericantitruncated 8-simplex |
---|
58 | node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4,5{3,3,3,3,3,3,3} Pentisteritruncated 8-simplex |
---|
59 | node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}} t0,2,4,5{3,3,3,3,3,3,3} Pentistericantellated 8-simplex |
---|
60 | node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}} t1,2,4,5{3,3,3,3,3,3,3} Bisteriruncitruncated 8-simplex |
---|
61 | node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} t0,3,4,5{3,3,3,3,3,3,3} Pentisteriruncinated 8-simplex |
---|
62 | node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}} t1,3,4,5{3,3,3,3,3,3,3} Bisteriruncicantellated 8-simplex |
---|
63 | node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}} t2,3,4,5{3,3,3,3,3,3,3} Triruncicantitruncated 8-simplex |
---|
64 | node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,6{3,3,3,3,3,3,3} Hexicantitruncated 8-simplex |
---|
65 | node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,6{3,3,3,3,3,3,3} Hexiruncitruncated 8-simplex |
---|
66 | node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,6{3,3,3,3,3,3,3} Hexiruncicantellated 8-simplex |
---|
67 | node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,6{3,3,3,3,3,3,3} Bipenticantitruncated 8-simplex |
---|
68 | node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4,6{3,3,3,3,3,3,3} Hexisteritruncated 8-simplex |
---|
69 | node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} t0,2,4,6{3,3,3,3,3,3,3} Hexistericantellated 8-simplex |
---|
70 | node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} t1,2,4,6{3,3,3,3,3,3,3} Bipentiruncitruncated 8-simplex |
---|
71 | node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} t0,3,4,6{3,3,3,3,3,3,3} Hexisteriruncinated 8-simplex |
---|
72 | node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} t1,3,4,6{3,3,3,3,3,3,3} Bipentiruncicantellated 8-simplex |
---|
73 | node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,5,6{3,3,3,3,3,3,3} Hexipentitruncated 8-simplex |
---|
74 | node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2,5,6{3,3,3,3,3,3,3} Hexipenticantellated 8-simplex |
---|
75 | node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}} t1,2,5,6{3,3,3,3,3,3,3} Bipentisteritruncated 8-simplex |
---|
76 | node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}} t0,3,5,6{3,3,3,3,3,3,3} Hexipentiruncinated 8-simplex |
---|
77 | node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}} t0,4,5,6{3,3,3,3,3,3,3} Hexipentistericated 8-simplex |
---|
78 | node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,7{3,3,3,3,3,3,3} Hepticantitruncated 8-simplex |
---|
79 | node_1|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,7{3,3,3,3,3,3,3} Heptiruncitruncated 8-simplex |
---|
80 | node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,7{3,3,3,3,3,3,3} Heptiruncicantellated 8-simplex |
---|
81 | node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4,7{3,3,3,3,3,3,3} Heptisteritruncated 8-simplex |
---|
82 | node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} t0,2,4,7{3,3,3,3,3,3,3} Heptistericantellated 8-simplex |
---|
83 | node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} t0,3,4,7{3,3,3,3,3,3,3} Heptisteriruncinated 8-simplex |
---|
84 | node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,5,7{3,3,3,3,3,3,3} Heptipentitruncated 8-simplex |
---|
85 | node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} t0,2,5,7{3,3,3,3,3,3,3} Heptipenticantellated 8-simplex |
---|
86 | node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1}} t0,1,6,7{3,3,3,3,3,3,3} Heptihexitruncated 8-simplex |
---|
87 | node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4{3,3,3,3,3,3,3} Steriruncicantitruncated 8-simplex |
---|
88 | node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,5{3,3,3,3,3,3,3} Pentiruncicantitruncated 8-simplex |
---|
89 | node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,5{3,3,3,3,3,3,3} Pentistericantitruncated 8-simplex |
---|
90 | node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,5{3,3,3,3,3,3,3} Pentisteriruncitruncated 8-simplex |
---|
91 | node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4,5{3,3,3,3,3,3,3} Pentisteriruncicantellated 8-simplex |
---|
92 | node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,4,5{3,3,3,3,3,3,3} Bisteriruncicantitruncated 8-simplex |
---|
93 | node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,6{3,3,3,3,3,3,3} Hexiruncicantitruncated 8-simplex |
---|
94 | node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,6{3,3,3,3,3,3,3} Hexistericantitruncated 8-simplex |
---|
95 | node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,6{3,3,3,3,3,3,3} Hexisteriruncitruncated 8-simplex |
---|
96 | node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4,6{3,3,3,3,3,3,3} Hexisteriruncicantellated 8-simplex |
---|
97 | node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,4,6{3,3,3,3,3,3,3} Bipentiruncicantitruncated 8-simplex |
---|
98 | node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,5,6{3,3,3,3,3,3,3} Hexipenticantitruncated 8-simplex |
---|
99 | node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,5,6{3,3,3,3,3,3,3} Hexipentiruncitruncated 8-simplex |
---|
100 | node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,5,6{3,3,3,3,3,3,3} Hexipentiruncicantellated 8-simplex |
---|
101 | node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,5,6{3,3,3,3,3,3,3} Bipentistericantitruncated 8-simplex |
---|
102 | node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4,5,6{3,3,3,3,3,3,3} Hexipentisteritruncated 8-simplex |
---|
103 | node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}} t0,2,4,5,6{3,3,3,3,3,3,3} Hexipentistericantellated 8-simplex |
---|
104 | node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} t0,3,4,5,6{3,3,3,3,3,3,3} Hexipentisteriruncinated 8-simplex |
---|
105 | node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,7{3,3,3,3,3,3,3} Heptiruncicantitruncated 8-simplex |
---|
106 | node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,7{3,3,3,3,3,3,3} Heptistericantitruncated 8-simplex |
---|
107 | node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,7{3,3,3,3,3,3,3} Heptisteriruncitruncated 8-simplex |
---|
108 | node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4,7{3,3,3,3,3,3,3} Heptisteriruncicantellated 8-simplex |
---|
109 | node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,5,7{3,3,3,3,3,3,3} Heptipenticantitruncated 8-simplex |
---|
110 | node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,5,7{3,3,3,3,3,3,3} Heptipentiruncitruncated 8-simplex |
---|
111 | node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,5,7{3,3,3,3,3,3,3} Heptipentiruncicantellated 8-simplex |
---|
112 | node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} t0,1,4,5,7{3,3,3,3,3,3,3} Heptipentisteritruncated 8-simplex |
---|
113 | node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,6,7{3,3,3,3,3,3,3} Heptihexicantitruncated 8-simplex |
---|
114 | node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,6,7{3,3,3,3,3,3,3} Heptihexiruncitruncated 8-simplex |
---|
115 | node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,5{3,3,3,3,3,3,3} Pentisteriruncicantitruncated 8-simplex |
---|
116 | node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,6{3,3,3,3,3,3,3} Hexisteriruncicantitruncated 8-simplex |
---|
117 | node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,5,6{3,3,3,3,3,3,3} Hexipentiruncicantitruncated 8-simplex |
---|
118 | node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,5,6{3,3,3,3,3,3,3} Hexipentistericantitruncated 8-simplex |
---|
119 | node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,5,6{3,3,3,3,3,3,3} Hexipentisteriruncitruncated 8-simplex |
---|
120 | node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4,5,6{3,3,3,3,3,3,3} Hexipentisteriruncicantellated 8-simplex |
---|
121 | node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} t1,2,3,4,5,6{3,3,3,3,3,3,3} Bipentisteriruncicantitruncated 8-simplex |
---|
122 | node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,7{3,3,3,3,3,3,3} Heptisteriruncicantitruncated 8-simplex |
---|
123 | node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,5,7{3,3,3,3,3,3,3} Heptipentiruncicantitruncated 8-simplex |
---|
124 | node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,5,7{3,3,3,3,3,3,3} Heptipentistericantitruncated 8-simplex |
---|
125 | node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,5,7{3,3,3,3,3,3,3} Heptipentisteriruncitruncated 8-simplex |
---|
126 | node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} t0,2,3,4,5,7{3,3,3,3,3,3,3} Heptipentisteriruncicantellated 8-simplex |
---|
127 | node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,6,7{3,3,3,3,3,3,3} Heptihexiruncicantitruncated 8-simplex |
---|
128 | node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,4,6,7{3,3,3,3,3,3,3} Heptihexistericantitruncated 8-simplex |
---|
129 | node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} t0,1,3,4,6,7{3,3,3,3,3,3,3} Heptihexisteriruncitruncated 8-simplex |
---|
130 | node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} t0,1,2,5,6,7{3,3,3,3,3,3,3} Heptihexipenticantitruncated 8-simplex |
---|
131 | node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,5,6{3,3,3,3,3,3,3} Hexipentisteriruncicantitruncated 8-simplex |
---|
132 | node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,5,7{3,3,3,3,3,3,3} Heptipentisteriruncicantitruncated 8-simplex |
---|
133 | node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,6,7{3,3,3,3,3,3,3} Heptihexisteriruncicantitruncated 8-simplex |
---|
134 | node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,5,6,7{3,3,3,3,3,3,3} Heptihexipentiruncicantitruncated 8-simplex |
---|
135 | node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} t0,1,2,3,4,5,6,7{3,3,3,3,3,3,3} Omnitruncated 8-simplex |
---|
References- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
External links- {{KlitzingPolytopes|polypeta.htm|8D|uniform polytopes (polyzetta)}}
Notes1. ^Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
{{Polytopes}} 1 : 8-polytopes |