请输入您要查询的百科知识:

 

词条 A8 polytope
释义

  1. Graphs

  2. References

  3. External links

  4. Notes

{{DISPLAYTITLE:A8 polytope}}
Orthographic projections
A8 Coxeter plane
8-simplex
{{CDD>node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

In 8-dimensional geometry, there are 135 uniform polytopes with A8 symmetry. There is one self-dual regular form, the 8-simplex with 9 vertices.

Each can be visualized as symmetric orthographic projections in Coxeter planes of the A8 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projections of these 135 polytopes can be made in the A8, A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has [k+1] symmetry.

These 135 polytopes are each shown in these 7 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

#Coxeter-Dynkin diagram
Schläfli symbol
Johnson name
Ak orthogonal projection graphs
A8
[9]
A7
[8]
A6
[7]
A5
[6]
A4
[5]
A3
[4]
A2
[3]
1node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0{3,3,3,3,3,3,3}
8-simplex
2node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1{3,3,3,3,3,3,3}
Rectified 8-simplex
3node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}
t2{3,3,3,3,3,3,3}
Birectified 8-simplex
4node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}
t3{3,3,3,3,3,3,3}
Trirectified 8-simplex
5node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1{3,3,3,3,3,3,3}
Truncated 8-simplex
6node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2{3,3,3,3,3,3,3}
Cantellated 8-simplex
7node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2{3,3,3,3,3,3,3}
Bitruncated 8-simplex
8node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3{3,3,3,3,3,3,3}
Runcinated 8-simplex
9node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3{3,3,3,3,3,3,3}
Bicantellated 8-simplex
10node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}
t2,3{3,3,3,3,3,3,3}
Tritruncated 8-simplex
11node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4{3,3,3,3,3,3,3}
Stericated 8-simplex
12node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,4{3,3,3,3,3,3,3}
Biruncinated 8-simplex
13node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}
t2,4{3,3,3,3,3,3,3}
Tricantellated 8-simplex
14node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
t3,4{3,3,3,3,3,3,3}
Quadritruncated 8-simplex
15node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5{3,3,3,3,3,3,3}
Pentellated 8-simplex
16node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}}
t1,5{3,3,3,3,3,3,3}
Bistericated 8-simplex
17node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
t2,5{3,3,3,3,3,3,3}
Triruncinated 8-simplex
18node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,6{3,3,3,3,3,3,3}
Hexicated 8-simplex
19node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1,6{3,3,3,3,3,3,3}
Bipentellated 8-simplex
20node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,7{3,3,3,3,3,3,3}
Heptellated 8-simplex
21node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2{3,3,3,3,3,3,3}
Cantitruncated 8-simplex
22node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3{3,3,3,3,3,3,3}
Runcitruncated 8-simplex
23node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3{3,3,3,3,3,3,3}
Runcicantellated 8-simplex
24node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3{3,3,3,3,3,3,3}
Bicantitruncated 8-simplex
25node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4{3,3,3,3,3,3,3}
Steritruncated 8-simplex
26node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4{3,3,3,3,3,3,3}
Stericantellated 8-simplex
27node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4{3,3,3,3,3,3,3}
Biruncitruncated 8-simplex
28node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4{3,3,3,3,3,3,3}
Steriruncinated 8-simplex
29node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t1,3,4{3,3,3,3,3,3,3}
Biruncicantellated 8-simplex
30node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t2,3,4{3,3,3,3,3,3,3}
Tricantitruncated 8-simplex
31node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5{3,3,3,3,3,3,3}
Pentitruncated 8-simplex
32node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,5{3,3,3,3,3,3,3}
Penticantellated 8-simplex
33node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2,5{3,3,3,3,3,3,3}
Bisteritruncated 8-simplex
34node|3|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,5{3,3,3,3,3,3,3}
Pentiruncinated 8-simplex
35node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3,5{3,3,3,3,3,3,3}
Bistericantellated 8-simplex
36node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
t2,3,5{3,3,3,3,3,3,3}
Triruncitruncated 8-simplex
37node|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4,5{3,3,3,3,3,3,3}
Pentistericated 8-simplex
38node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,4,5{3,3,3,3,3,3,3}
Bisteriruncinated 8-simplex
39node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,6{3,3,3,3,3,3,3}
Hexitruncated 8-simplex
40node|3|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,6{3,3,3,3,3,3,3}
Hexicantellated 8-simplex
41node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2,6{3,3,3,3,3,3,3}
Bipentitruncated 8-simplex
42node|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,6{3,3,3,3,3,3,3}
Hexiruncinated 8-simplex
43node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3,6{3,3,3,3,3,3,3}
Bipenticantellated 8-simplex
44node|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4,6{3,3,3,3,3,3,3}
Hexistericated 8-simplex
45node|3|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5,6{3,3,3,3,3,3,3}
Hexipentellated 8-simplex
46node_1|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,7{3,3,3,3,3,3,3}
Heptitruncated 8-simplex
47node_1|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,7{3,3,3,3,3,3,3}
Hepticantellated 8-simplex
48node_1|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,7{3,3,3,3,3,3,3}
Heptiruncinated 8-simplex
49node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3{3,3,3,3,3,3,3}
Runcicantitruncated 8-simplex
50node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4{3,3,3,3,3,3,3}
Stericantitruncated 8-simplex
51node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4{3,3,3,3,3,3,3}
Steriruncitruncated 8-simplex
52node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4{3,3,3,3,3,3,3}
Steriruncicantellated 8-simplex
53node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4{3,3,3,3,3,3,3}
Biruncicantitruncated 8-simplex
54node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5{3,3,3,3,3,3,3}
Penticantitruncated 8-simplex
55node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5{3,3,3,3,3,3,3}
Pentiruncitruncated 8-simplex
56node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,5{3,3,3,3,3,3,3}
Pentiruncicantellated 8-simplex
57node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,5{3,3,3,3,3,3,3}
Bistericantitruncated 8-simplex
58node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,5{3,3,3,3,3,3,3}
Pentisteritruncated 8-simplex
59node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,5{3,3,3,3,3,3,3}
Pentistericantellated 8-simplex
60node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4,5{3,3,3,3,3,3,3}
Bisteriruncitruncated 8-simplex
61node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4,5{3,3,3,3,3,3,3}
Pentisteriruncinated 8-simplex
62node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t1,3,4,5{3,3,3,3,3,3,3}
Bisteriruncicantellated 8-simplex
63node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t2,3,4,5{3,3,3,3,3,3,3}
Triruncicantitruncated 8-simplex
64node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,6{3,3,3,3,3,3,3}
Hexicantitruncated 8-simplex
65node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,6{3,3,3,3,3,3,3}
Hexiruncitruncated 8-simplex
66node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,6{3,3,3,3,3,3,3}
Hexiruncicantellated 8-simplex
67node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,6{3,3,3,3,3,3,3}
Bipenticantitruncated 8-simplex
68node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,6{3,3,3,3,3,3,3}
Hexisteritruncated 8-simplex
69node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,6{3,3,3,3,3,3,3}
Hexistericantellated 8-simplex
70node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4,6{3,3,3,3,3,3,3}
Bipentiruncitruncated 8-simplex
71node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4,6{3,3,3,3,3,3,3}
Hexisteriruncinated 8-simplex
72node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t1,3,4,6{3,3,3,3,3,3,3}
Bipentiruncicantellated 8-simplex
73node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5,6{3,3,3,3,3,3,3}
Hexipentitruncated 8-simplex
74node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,5,6{3,3,3,3,3,3,3}
Hexipenticantellated 8-simplex
75node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2,5,6{3,3,3,3,3,3,3}
Bipentisteritruncated 8-simplex
76node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,5,6{3,3,3,3,3,3,3}
Hexipentiruncinated 8-simplex
77node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4,5,6{3,3,3,3,3,3,3}
Hexipentistericated 8-simplex
78node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,7{3,3,3,3,3,3,3}
Hepticantitruncated 8-simplex
79node_1|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,7{3,3,3,3,3,3,3}
Heptiruncitruncated 8-simplex
80node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,7{3,3,3,3,3,3,3}
Heptiruncicantellated 8-simplex
81node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,7{3,3,3,3,3,3,3}
Heptisteritruncated 8-simplex
82node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,7{3,3,3,3,3,3,3}
Heptistericantellated 8-simplex
83node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4,7{3,3,3,3,3,3,3}
Heptisteriruncinated 8-simplex
84node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5,7{3,3,3,3,3,3,3}
Heptipentitruncated 8-simplex
85node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,5,7{3,3,3,3,3,3,3}
Heptipenticantellated 8-simplex
86node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,6,7{3,3,3,3,3,3,3}
Heptihexitruncated 8-simplex
87node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4{3,3,3,3,3,3,3}
Steriruncicantitruncated 8-simplex
88node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5{3,3,3,3,3,3,3}
Pentiruncicantitruncated 8-simplex
89node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5{3,3,3,3,3,3,3}
Pentistericantitruncated 8-simplex
90node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,5{3,3,3,3,3,3,3}
Pentisteriruncitruncated 8-simplex
91node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,5{3,3,3,3,3,3,3}
Pentisteriruncicantellated 8-simplex
92node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4,5{3,3,3,3,3,3,3}
Bisteriruncicantitruncated 8-simplex
93node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,6{3,3,3,3,3,3,3}
Hexiruncicantitruncated 8-simplex
94node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,6{3,3,3,3,3,3,3}
Hexistericantitruncated 8-simplex
95node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,6{3,3,3,3,3,3,3}
Hexisteriruncitruncated 8-simplex
96node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,6{3,3,3,3,3,3,3}
Hexisteriruncicantellated 8-simplex
97node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4,6{3,3,3,3,3,3,3}
Bipentiruncicantitruncated 8-simplex
98node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5,6{3,3,3,3,3,3,3}
Hexipenticantitruncated 8-simplex
99node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5,6{3,3,3,3,3,3,3}
Hexipentiruncitruncated 8-simplex
100node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,5,6{3,3,3,3,3,3,3}
Hexipentiruncicantellated 8-simplex
101node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,5,6{3,3,3,3,3,3,3}
Bipentistericantitruncated 8-simplex
102node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,5,6{3,3,3,3,3,3,3}
Hexipentisteritruncated 8-simplex
103node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,5,6{3,3,3,3,3,3,3}
Hexipentistericantellated 8-simplex
104node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4,5,6{3,3,3,3,3,3,3}
Hexipentisteriruncinated 8-simplex
105node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,7{3,3,3,3,3,3,3}
Heptiruncicantitruncated 8-simplex
106node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,7{3,3,3,3,3,3,3}
Heptistericantitruncated 8-simplex
107node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,7{3,3,3,3,3,3,3}
Heptisteriruncitruncated 8-simplex
108node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,7{3,3,3,3,3,3,3}
Heptisteriruncicantellated 8-simplex
109node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5,7{3,3,3,3,3,3,3}
Heptipenticantitruncated 8-simplex
110node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5,7{3,3,3,3,3,3,3}
Heptipentiruncitruncated 8-simplex
111node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,5,7{3,3,3,3,3,3,3}
Heptipentiruncicantellated 8-simplex
112node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,5,7{3,3,3,3,3,3,3}
Heptipentisteritruncated 8-simplex
113node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,6,7{3,3,3,3,3,3,3}
Heptihexicantitruncated 8-simplex
114node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,6,7{3,3,3,3,3,3,3}
Heptihexiruncitruncated 8-simplex
115node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5{3,3,3,3,3,3,3}
Pentisteriruncicantitruncated 8-simplex
116node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,6{3,3,3,3,3,3,3}
Hexisteriruncicantitruncated 8-simplex
117node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5,6{3,3,3,3,3,3,3}
Hexipentiruncicantitruncated 8-simplex
118node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5,6{3,3,3,3,3,3,3}
Hexipentistericantitruncated 8-simplex
119node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,5,6{3,3,3,3,3,3,3}
Hexipentisteriruncitruncated 8-simplex
120node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,5,6{3,3,3,3,3,3,3}
Hexipentisteriruncicantellated 8-simplex
121node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4,5,6{3,3,3,3,3,3,3}
Bipentisteriruncicantitruncated 8-simplex
122node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,7{3,3,3,3,3,3,3}
Heptisteriruncicantitruncated 8-simplex
123node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5,7{3,3,3,3,3,3,3}
Heptipentiruncicantitruncated 8-simplex
124node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5,7{3,3,3,3,3,3,3}
Heptipentistericantitruncated 8-simplex
125node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,5,7{3,3,3,3,3,3,3}
Heptipentisteriruncitruncated 8-simplex
126node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,5,7{3,3,3,3,3,3,3}
Heptipentisteriruncicantellated 8-simplex
127node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,6,7{3,3,3,3,3,3,3}
Heptihexiruncicantitruncated 8-simplex
128node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,6,7{3,3,3,3,3,3,3}
Heptihexistericantitruncated 8-simplex
129node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,6,7{3,3,3,3,3,3,3}
Heptihexisteriruncitruncated 8-simplex
130node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5,6,7{3,3,3,3,3,3,3}
Heptihexipenticantitruncated 8-simplex
131node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5,6{3,3,3,3,3,3,3}
Hexipentisteriruncicantitruncated 8-simplex
132node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5,7{3,3,3,3,3,3,3}
Heptipentisteriruncicantitruncated 8-simplex
133node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,6,7{3,3,3,3,3,3,3}
Heptihexisteriruncicantitruncated 8-simplex
134node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5,6,7{3,3,3,3,3,3,3}
Heptihexipentiruncicantitruncated 8-simplex
135node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5,6,7{3,3,3,3,3,3,3}
Omnitruncated 8-simplex

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

  • {{KlitzingPolytopes|polypeta.htm|8D|uniform polytopes (polyzetta)}}

Notes

1. ^Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
{{Polytopes}}

1 : 8-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 21:04:17