词条 | Adjoint state method |
释义 |
The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. It has applications in geophysics, seismic imaging and more recently in neural networks[1]. The adjoint state space is chosen to simplify the physical interpretation of equation constraints.[2] It may take the form of a Hilbert space. Adjoint state techniques allow the use of integration by parts, resulting in a form which explicitly contains the physically interesting quantity. An adjoint state equation is introduced, including a new unknown variable. The adjoint method formulates the gradient of a function towards its parameters in a constraint optimization form. By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast. A nice property is that the number of computations is independent of the number of parameters for which you want the gradient. The adjoint method is derived from the dual problem and is used e.g. in the Landweber iteration method . The name adjoint state method refers to the dual form of the problem, where the adjoint matrix is used. When the initial problem consists of calculating the product and must satisfy , the dual problem can be realized as calculating the product (), where must satisfy . And is called the adjoint state vector. See also
References1. ^ Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud Neural Ordinary Differential Equations [https://arxiv.org/pdf/1806.07366.pdf Available online] 2. ^Alain Sei & William Symes. Gradient Calculation of the Traveltime Cost Function Without Ray-tracing. Expanded Abstracts, 65th Annual Society of Exploration Geophysicists (SEG) Meeting and Exposition, pages 1351–1354 (Available online) External links
1 : Numerical analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。