词条 | Gluten |
释义 |
Gluten (from Latin gluten, "glue") is a group of proteins, termed prolamins and glutelins,[1] stored with starch in the endosperm of various cereal (grass) grains. It is found in wheat (including related wheat species and hybrids, such as spelt, khorasan, emmer, einkorn, and triticale); barley, rye, and oats[2] as well as products derived from these grains such as breads and malts. Glutens, especially Triticeae glutens, have unique viscoelastic and adhesive properties, which give dough its elasticity, helping it rise and keep its shape and often leaving the final product with a chewy texture.[3][3][4] These properties and its relative low cost are the reasons why gluten is so widely demanded by the food industry and for non-food uses.[4] Prolamins in wheat are called gliadins; in barley, hordeins; in rye, secalins; and in oats, avenins. These protein classes are collectively referred to as gluten.[2] Wheat glutelins are called glutenin.[5] True gluten is limited to these four grains.[1] (The storage proteins in maize and rice are sometimes called glutens, but they differ from true gluten.[1]) Gluten can trigger adverse inflammatory, immunological and autoimmune reactions and is responsible for a broad spectrum of gluten-related disorders, including coeliac disease, non-coeliac gluten sensitivity, dermatitis herpetiformis, gluten ataxia and other neurological disorders.[11][12][6] Their treatment is the gluten-free diet.[11][12] The occurrence of oat avenin toxicity depends on the oat cultivar consumed, because the immunoreactivities of toxic prolamins are different among oat varieties.[7][8][9] Also, many oat products are cross-contaminated with other gluten-containing cereals.[8] PreparationGluten is a protein complex that accounts for 75–85% of the total protein in bread wheat.[3][10] In home or restaurant cooking, gluten is prepared from flour by kneading the flour under water, agglomerating the gluten into an elastic network known as a dough, and then washing out the starch.[3] Starch granules disperse in low-temperature water, and the dispersed starch is sedimented and dried. If a saline solution is used instead of water, a purer protein is obtained, with certain harmless impurities departing the solution with the starch. Where starch is the prime product, cold water is the favored solvent because the impurities depart from the gluten. In industrial production, a slurry of wheat flour is kneaded vigorously by machinery until the gluten agglomerates into a mass.[11]{{Failed verification|date=September 2018}} This mass is collected by centrifugation, then transported through several stages integrated in a continuous process. About 65% of the water in the wet gluten is removed by means of a screw press; the remainder is sprayed through an atomizer nozzle into a drying chamber, where it remains at an elevated temperature for a short time to allow the water to evaporate without denaturing the gluten.{{citation needed|date=December 2016}} The process yields a flour-like powder with a 7% moisture content, which is air cooled and pneumatically transported to a receiving vessel. In the final step, the processed gluten is sifted and milled to produce a uniform product.[11] UsesBread productsGluten forms when glutenin molecules cross-link via disulfide bonds to form a submicroscopic network attached to gliadin, which contributes viscosity (thickness) and extensibility to the mix.[12][13] If this dough is leavened with yeast, fermentation produces carbon dioxide bubbles, which, trapped by the gluten network, cause the dough to rise. Baking coagulates the gluten, which, along with starch, stabilizes the shape of the final product. Gluten content has been implicated as a factor in the staling of bread, possibly because it binds water through hydration.[14] The formation of gluten affects the texture of the baked goods.[12] Gluten's attainable elasticity is proportional to its content of glutenins with low molecular weights, as this portion contains the preponderance of the sulfur atoms responsible for the cross-linking in the gluten network.[15][16] Further refining of the gluten leads to chewier doughs such as those found in pizza and bagels, while less refining yields tender baked goods such as pastry products.[17] Generally, bread flours are high in gluten (hard wheat); pastry flours have a lower gluten content. Kneading promotes the formation of gluten strands and cross-links, creating baked products that are chewier (as opposed to more brittle or crumbly). The "chewiness" increases as the dough is kneaded for longer times. An increased moisture content in the dough enhances gluten development,[17] and very wet doughs left to rise for a long time require no kneading (see no-knead bread). Shortening inhibits formation of cross-links and is used, along with diminished water and less kneading, when a tender and flaky product, such as a pie crust, is desired. The strength and elasticity of gluten in flour is measured in the baking industry using a farinograph. This gives the baker a measurement of quality for different varieties of flours when developing recipes for various baked goods.[12][18][19] Added glutenGluten, when dried, milled and added to ordinary flour dough, may help improve the dough's ability to increase in volume. The resulting mixture also increases the bread's structural stability and chewiness.[20] Gluten-added dough must be worked vigorously to induce it to rise to its full capacity; an automatic bread machine or food processor may be required for high-gluten kneading.[21] Generally, higher gluten levels are associated with higher overall protein content.[22] Imitation meats{{details|topic=the use of gluten in cooking|Wheat gluten (food)}}Gluten, especially wheat gluten, is often the basis for imitation meats resembling beef, chicken, duck (see mock duck), fish and pork. When cooked in broth, gluten absorbs some of the surrounding liquid (including the flavor) and becomes firm to the bite.[23][24] This use of gluten is a popular means of adding supplemental protein to many vegetarian diets. Other consumer productsGluten is often present in beer and soy sauce, and can be used as a stabilizing agent in more unexpected food products, such as ice cream and ketchup. Foods of this kind may therefore present problems for a small number of consumers because the hidden gluten constitutes a hazard for people with celiac disease and gluten sensitivities. The protein content of some pet foods may also be enhanced by adding gluten.[25] Gluten is also used in cosmetics, hair products and other dermatological preparations.[26] Disorders{{Main article|Gluten-related disorders|Gluten-sensitive enteropathy-associated conditions|Gluten-sensitive idiopathic neuropathies}}"Gluten-related disorders" is the umbrella term for all diseases triggered by gluten, which include celiac disease (CD), non-celiac gluten sensitivity (NCGS), wheat allergy, gluten ataxia and dermatitis herpetiformis (DH).[27] IncidenceCurrently, their incidence is increasing in most geographic areas of the world.[28][29][30] This can possibly be explained by one or more of the following: the growing westernization of diets,[28] the increasing use of wheat-based foods included in the Mediterranean diet,[31][32] the progressive replacement of rice by wheat in many countries in Asia, the Middle East, and North Africa,[28] the development in recent years of new types of wheat with a higher amount of cytotoxic gluten peptides,[33][34] and the higher content of gluten in bread and bakery products due to the reduction of dough fermentation time.[33][35] Celiac disease{{Main article|Celiac disease}}Celiac disease (CD) is a chronic, multiple-organ autoimmune disorder primarily affecting the small intestine caused by the ingestion of wheat, barley, rye, oats, and derivatives, that appears in genetically predisposed people of all ages. CD is not only a gastrointestinal disease, because it may involve several organs and cause an extensive variety of non-gastrointestinal symptoms, and most importantly, it may be apparently asymptomatic.[36][2] Many asymptomatic people actually are not, but have become accustomed to living with a chronic bad health status as if it were normal, and they are able to recognize that they actually had symptoms related to celiac disease after starting the gluten-free diet and improvement is evident, in contrast to the situation prior to the diet.[36][58][29] Added difficulties for diagnosis are the fact that serological markers (anti-tissue transglutaminase [TG2]) are not always present[37] and many people may have minor mucosal lesions, without atrophy of the intestinal villi.[38]CD affects approximately 1–2% of the general population,[39] but most cases remain unrecognized, undiagnosed and untreated, and at risk for serious long-term health complications.[29][39][40][41] People may suffer severe disease symptoms and be subjected to extensive investigations for many years, before a proper diagnosis is achieved.[42] Untreated CD may cause malabsorption, reduced quality of life, iron deficiency, osteoporosis, an increased risk of intestinal lymphomas, and greater mortality.[43] CD is associated with some other autoimmune diseases, such as diabetes mellitus type 1, thyroiditis,[44] gluten ataxia, psoriasis, vitiligo, autoimmune hepatitis, dermatitis herpetiformis, primary sclerosing cholangitis, and more.[44] CD with "classic symptoms", which include gastrointestinal manifestations such as chronic diarrhea and abdominal distention, malabsorption, loss of appetite, and impaired growth, is currently the least common presentation form of the disease and affects predominantly small children generally younger than two years of age.[40][42] CD with "non-classic symptoms" is the most common clinical type[42] and occurs in older children (over 2 years old),[42] adolescents, and adults.[42] It is characterized by milder or even absent gastrointestinal symptoms and a wide spectrum of non-intestinal manifestations that can involve any organ of the body, and very frequently may be completely asymptomatic[40] both in children (at least in 43% of the cases[45]) and adults.[40] Non-celiac gluten sensitivity{{Main article|Non-celiac gluten sensitivity}}Non-celiac gluten sensitivity (NCGS) is described as a condition of multiple symptoms that improves when switching to a gluten-free diet, after celiac disease and wheat allergy are excluded.[46][47] Recognized since 2010,[81][48] it is included among gluten-related disorders,[81] but its pathogenesis is not yet well understood.[48] NCGS is the most common syndrome of gluten intolerance,[81][49] with a prevalence estimated to be 6-10%.[50] NCGS is becoming a more common diagnosis, but its true prevalence is difficult to determine because many people self-diagnose and start the gluten-free diet, without having previously tested for celiac disease or doctor's recommendations.[51] People with NCGS remain habitually in a "no man's land", without being recognized by the specialists and lacking the adequate medical care and treatment.[52] Most of these people have a long history of health complaints and unsuccessful consultations with numerous physicians, and this is the reason why the majority of them end up resorting to a gluten-free diet and a self-diagnosis of gluten sensitivity.[53] People with NCGS may develop gastrointestinal symptoms, which resemble those of irritable bowel syndrome or wheat allergy,[54][55] or a wide variety of non-gastrointestinal symptoms, such as headache, chronic fatigue, fibromyalgia, atopic diseases, allergies, neurological diseases, or psychiatric disorders, among others.[43][48][56] The results of a 2017 study suggest that NCGS may be a chronic disorder, as is the case with celiac disease.[96] Besides gluten, additional components present in wheat, rye, barley, oats, and their derivatives, including other proteins called amylase-trypsin inhibitors (ATIs) and short-chain carbohydrates known as FODMAPs, may cause NCGS symptoms.[48]As of 2019, reviews conclude that although FODMAPs present in wheat and related grains may play a role in non-celiac gluten sensitivity, they only explain certain gastrointestinal symptoms, such as bloating, but not the extra-digestive symptoms that people with non-celiac gluten sensitivity may develop, such as neurological disorders, fibromyalgia, psychological disturbances, and dermatitis.[57][58][48] ATIs may cause toll-like receptor 4 (TLR4)-mediated intestinal inflammation in humans.[59][60] Wheat allergy{{Main article|Wheat allergy}}People can also experience adverse effects of wheat as result of a wheat allergy.[41] As with most allergies, a wheat allergy causes the immune system to abnormally respond to a component of wheat that it treats as a threatening foreign body. This immune response is often time-limited and does not cause lasting harm to body tissues.[61] Wheat allergy and celiac disease are different disorders.[41][62] Gastrointestinal symptoms of wheat allergy are similar to those of celiac disease and non-celiac gluten sensitivity, but there is a different interval between exposure to wheat and onset of symptoms. An allergic reaction to wheat has a fast onset (from minutes to hours) after the consumption of food containing wheat and could include anaphylaxis.[37] Gluten ataxiaGluten ataxia is an autoimmune disease triggered by the ingestion of gluten.[63] With gluten ataxia, damage takes place in the cerebellum, the balance center of the brain that controls coordination and complex movements like walking, speaking and swallowing, with loss of Purkinje cells. People with gluten ataxia usually present gait abnormality or incoordination and tremor of the upper limbs. Gaze-evoked nystagmus and other ocular signs of cerebellar dysfunction are common. Myoclonus, palatal tremor, and opsoclonus-myoclonus may also appear.[109]Early diagnosis and treatment with a gluten-free diet can improve ataxia and prevent its progression. The effectiveness of the treatment depends on the elapsed time from the onset of the ataxia until diagnosis, because the death of neurons in the cerebellum as a result of gluten exposure is irreversible.[109][64] Gluten ataxia accounts for 40% of ataxias of unknown origin and 15% of all ataxias.[65][66] Less than 10% of people with gluten ataxia present any gastrointestinal symptom, yet about 40% have intestinal damage.[65] Other neurological disordersIn addition to gluten ataxia, gluten sensitivity can cause a wide spectrum of neurological disorders, which develop with or without the presence of digestive symptoms or intestinal damage.[67] These include peripheral neuropathy, epilepsy, headache, encephalopathy, vascular dementia, and various movement disorders (restless legs syndrome, chorea, parkinsonism, Tourette syndrome, palatal tremor, myoclonus, dystonia, opsoclonus myoclonus syndrome, paroxysms, dyskinesia, myorhythmia, myokymia).[67][68]The diagnosis of underlying gluten sensitivity is complicated and delayed when there are no digestive symptoms. People who do experience gastrointestinal problems are more likely to receive a correct diagnosis and treatment. A strict gluten-free diet is the first-line treatment, which should be started as soon as possible. It is effective in most of these disorders. When dementia has progressed to an advanced degree, the diet has no beneficial effect. Cortical myoclonus appears to be treatment-resistant on both gluten-free diet and immunosuppression.[67] Increased intestinal permeability{{main|Intestinal permeability}}Gliadin activates zonulin signaling in all people who eat gluten.[69] This leads to increased intestinal permeability to macromolecules, allowing passage of foreign antigens, microbes, microbial products, and toxins between the enterocytes of the intestinal mucosa into the portal circulation and beyond, which can result in activation of the immune system with secretion of inflammatory mediators.[70]Most people do not experience adverse effects, but an increased intestinal permeability can act as a trigger for diseases that can affect any organ or tissue, depending on genetic predisposition.[70][69][71] LabelingInternational standardsThe Codex Alimentarius international standards for food labeling has a standard relating to the labeling of products as "gluten-free". It only applies to foods that would normally contain gluten.[72] BrazilBy law in Brazil, all food products must display labels clearly indicating whether or not they contain gluten.[73] CanadaThe Canadian Celiac Association estimates that one in 133 Canadians experiences adverse symptoms from gluten in celiac disease.[74] Labels for all food products sold in Canada must clearly identify the presence of gluten if it is present at a level greater than 20 parts per million.[75] European UnionIn the European Union, all prepackaged foods and non-prepacked foods from a restaurant, take-out food wrapped just before sale, or unpackaged food served in institutions must be identified if gluten-free.[76] "Gluten-free" is defined as 20 parts per million of gluten or less and "very low gluten" is 100 parts per million of gluten or less; only foods with cereal ingredients processed to remove gluten can claim "very low gluten" on labels.[76] All foods containing gluten as an ingredient must be labelled accordingly as gluten is defined as one of the 14 recognised EU allergens.[77] United StatesIn the United States, gluten is not listed on labels unless added as a standalone ingredient. Wheat or other allergens are listed after the ingredient line. The US Food and Drug Administration (FDA) has historically classified gluten as "generally recognized as safe" (GRAS). In August 2013, the FDA issued a final ruling, effective August 2014, that defined the term "gluten-free" for voluntary use in the labeling of foods as meaning that the amount of gluten contained in the food is below 20 parts per million.[78] See also
References1. ^1 2 {{cite web |url=https://web.archive.org/web/20070126011901/https://www.fda.gov/OHRMS/DOCKETS/98fr/05n-0279-npr0001.pdf|title= Food Labeling ; Gluten-Free Labeling of Foods |date= January 2007 |author= Food and Drug Administration }} 2. ^1 2 {{cite journal| author=Biesiekierski JR| title=What is gluten? | journal=J Gastroenterol Hepatol | year= 2017 | volume= 32 Suppl 1 | pages= 78–81 | pmid=28244676 | doi=10.1111/jgh.13703 | type=Review | quote= Similar proteins to the gliadin found in wheat exist as secalin in rye, hordein in barley, and avenins in oats and are collectively referred to as “gluten.” The gluten found in all of these grains has been identified as the component capable of triggering the immune-mediated disorder, coeliac disease.}}{{open access}} 3. ^{{cite journal | vauthors = Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C| title = Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients | journal = Nutrients | volume = 6| issue = 2| pages = 575–90| date = Jan 29, 2014| pmid = 24481131|pmc= 3942718| doi = 10.3390/nu6020575 |type= Review | quote= the distinctive feature that makes wheat unique is, precisely, the visco-elasticity of gluten. When the grain is milled and mixed with water, storage proteins form a dough, capable of retaining gas bubbles. These properties make wheat suitable for the preparation of a great diversity of food products }} 4. ^1 {{cite journal|vauthors= Day L, Augustin MA, Batey IL, Wrigley, CW|title= Wheat-gluten uses and industry needs|journal= Trends in Food Science & Technology|volume= 17|issue= 2|pages= 82–90|date= February 2006 |doi= 10.1016/j.tifs.2005.10.003 |type=Review}} 5. ^{{Cite book|chapter-url=https://books.google.com/books?id=LPbxCAAAQBAJ&pg=PA210|title=A Genetic Approach to Plant Biochemistry|editor1-last=Blonstein|editor1-first=A. D.|editor2-last=King|editor2-first=P. J.|date=2012-12-06|publisher=Springer Science & Business Media|isbn=9783709169896|location=|pages=210|language=en|chapter=Endosperm Proteins|last=Payne|first=P. I.}} 6. ^{{cite journal| vauthors=Lanza G, Bella R, Cantone M, Pennisi G, Ferri R, Pennisi M| title=Cognitive Impairment and Celiac Disease: Is Transcranial Magnetic Stimulation a Trait d'Union between Gut and Brain? | journal=Int J Mol Sci | date= July 2018 | volume= 19 | issue= 8 | pmid=30065211 | doi=10.3390/ijms19082243 | pmc=6121508 | type=Review }} 7. ^{{cite journal | vauthors = Penagini F, Dilillo D, Meneghin F, Mameli C, Fabiano V, Zuccotti GV| title = Gluten-free diet in children: an approach to a nutritionally adequate and balanced diet | journal = Nutrients | volume = 5| issue = 11| pages = 4553–65| date = Nov 18, 2013| pmid = 24253052|pmc= 3847748| doi = 10.3390/nu5114553| type=Review}} 8. ^1 {{cite journal| vauthors=de Souza MC, Deschênes ME, Laurencelle S, Godet P, Roy CC, Djilali-Saiah I| title=Pure Oats as Part of the Canadian Gluten-Free Diet in Celiac Disease: The Need to Revisit the Issue. | journal=Can J Gastroenterol Hepatol | year= 2016 | volume= 2016 | issue= | pages= 1–8 | pmid=27446824 | doi=10.1155/2016/1576360 | pmc=4904650 | type= Review }} 9. ^{{cite journal | vauthors = Comino I, Moreno Mde L, Sousa C | title = Role of oats in celiac disease | journal = World J Gastroenterol | volume = 21 | issue = 41 | pages = 11825–31 | date = Nov 7, 2015 | pmid = 26557006 |pmc= 4631980 | doi = 10.3748/wjg.v21.i41.11825 |quote= It is necessary to consider that oats include many varieties, containing various amino acid sequences and showing different immunoreactivities associated with toxic prolamins. As a result, several studies have shown that the immunogenicity of oats varies depending on the cultivar consumed. Thus, it is essential to thoroughly study the variety of oats used in a food ingredient before including it in a gluten-free diet.}} 10. ^{{Cite web |url=https://www.grainscanada.gc.ca/fact-fait/gluten-eng.htm |title=Gluten's role in bread baking performance |publisher=Canadian Grain Commission |date=29 March 2016}} 11. ^1 {{cite journal|pmc=4252461|year=2013|author1=Sakhare|first1=S. D.|title=Effect of flour particle size on microstructural, rheological and physico-sensory characteristics of bread and south Indian parotta|journal=Journal of Food Science and Technology|volume=51|issue=12|pages=4108–4113|last2=Inamdar|first2=A. A.|last3=Soumya|first3=C|last4=Indrani|first4=D|last5=Rao|first5=G. V.|doi=10.1007/s13197-013-0939-5|pmid=25477689}} 12. ^1 2 3 4 5 {{cite journal|pmc=1692935|year=2002|author1=Shewry|first1=P. R.|title=The structure and properties of gluten: An elastic protein from wheat grain|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|volume=357|issue=1418|pages=133–142|last2=Halford|first2=N. G.|last3=Belton|first3=P. S.|last4=Tatham|first4=A. S.|doi=10.1098/rstb.2001.1024|pmid=11911770}} 13. ^{{cite web|last1=Woychick|first1=JH|url=http://www.friedli.com/research/PhD/gluten/chap2.html|title=The Gluten Proteins and Deamidated Soluble Wheat Protein|accessdate=8 September 2009|display-authors=etal}} 14. ^Sahlstrom, S. & Brathen, E. (1997). "Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling". Food Chemistry, 58, 1, 75–80. Effects of wheat variety and processing conditions in experimental bread-baking studied by univariate and multivariate analysis. 15. ^{{cite journal | last = Edwards | first = N. M. |author2=Mulvaney, S. J. |author3=Scanlon, M. G. |author4=Dexter, J. E. | year = 2003 | title = Role of gluten and its components in determining durum semolina dough viscoelastic properties | journal=Cereal Chemistry | volume=80 | issue=6 | pages=755–763 | url = http://cat.inist.fr/?aModele=afficheN&cpsidt=15273405 | accessdate = 2007-08-14 | doi = 10.1094/CCHEM.2003.80.6.755}} 16. ^{{cite journal | last = Tosi | first = Paola |author2=Masci, Stefania |author3=Giovangrossi, Angela2 |author4=D'Ovidio, Renato |author5=Bekes, Frank |author6=Larroque, Oscar |author7=Napier, Johnathan |author8= Shewry, Peter |date=September 2005 | title = Modification of the Low Molecular Weight (LMW) Glutenin Composition of Transgenic Durum Wheat: Effects on Glutenin Polymer Size and Gluten Functionality | journal=Molecular Breeding | volume=16 | issue=2 | pages=113–126 | url = http://www.ingentaconnect.com/content/klu/molb/2005/00000016/00000002/00005912 | accessdate = 2007-08-14 | doi = 10.1007/s11032-005-5912-1}} 17. ^1 {{cite web | url = http://www.bakersassist.nl/processing5-2.htm | title = Baking Technology, Bread | publisher = Bakersassist | accessdate = 2007-08-14}} 18. ^{{cite web |url=http://www.ndsu.edu/ndsu/simsek/wheat/farinograph.html |title=Farinograph |date=22 September 2014 |website=Wheat Quality and Carbohydrate Research |publisher=North Dakota State University |accessdate=8 December 2014}} 19. ^{{cite journal |last=Oliver |first=JR |last2=Allen |first2=HM |date=January 1992 |title=The prediction of bread baking performance using the farinograph and extensograph |journal=Journal of Cereal Science |volume=15 |issue=1 |pages=79–89 |doi=10.1016/S0733-5210(09)80058-1 }} 20. ^{{cite book|author1= Amendola, J.|author2= Rees, N.|author3= Lundberg, D. E.|year=2002|title=Understanding Baking}} 21. ^{{cite book|author1=Eckhardt, L.W.|author2=Butts, D.C.|year=1997|title=Rustic European Breads from your Bread Machine}} 22. ^{{cite web|url=http://www.newyorker.com/magazine/2014/11/03/grain|title=Against the Grain|date=3 November 2014|website=The New Yorker|accessdate=8 December 2014}} 23. ^Bates, Dorothy, R.; Wingate, Colby. 1993. "Cooking with Gluten and Seitan." Summertown, Tennessee: The Book Publishing Co. 128 p 24. ^{{cite web |url=http://vegannomnoms.net/2011/03/how-to-make-seitan-an-illustrated-guide.html |title=How to Make Seitan: An Illustrated Guide |last=Abramowski |first=Nicole |date=11 March 2011 |website=Vegan Nom Noms |accessdate=8 December 2014}} 25. ^{{cite web | title = Pet Foods | accessdate = 14 August 2007 | publisher = International Wheat Gluten Association | archiveurl = https://web.archive.org/web/20071007175039/http://www.iwga.net/04_pet.htm | archivedate = 2007-10-07| url = http://www.iwga.net/04_pet.htm }} 26. ^{{cite journal|journal=Eur J Dermatol|year=2006|volume=16|issue=1|pages=4–11|title=Gluten intolerance and skin diseases|author1=Humbert P|author2= Pelletier F|author3= Dreno B|author4= Puzenat E|author5= Aubin F|pmid=16436335}} 27. ^1 2 {{cite journal |vauthors=Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C |title=The Oslo definitions for coeliac disease and related terms |journal=Gut |volume=62 |issue=1 |pages=43–52 | date=January 2013 |pmid=22345659 |pmc=3440559 |doi=10.1136/gutjnl-2011-301346|type=Review}} 28. ^1 2 {{cite journal | vauthors = Tovoli F, Masi C, Guidetti E, Negrini G, Paterini P, Bolondi L| title = Clinical and diagnostic aspects of gluten related disorders| journal = World J Clin Cases| volume = 3| issue = 3| pages = 275–84| date = Mar 16, 2015| pmid = 25789300|pmc= 4360499| doi = 10.12998/wjcc.v3.i3.275|type=Review}} 29. ^1 2 {{cite journal|vauthors=Lionetti E, Gatti S, Pulvirenti A, Catassi C|title=Celiac disease from a global perspective |journal=Best Pract Res Clin Gastroenterol |volume=29 |issue=3 |pages=365–79 |date=Jun 2015|pmid=26060103|doi=10.1016/j.bpg.2015.05.004|type=Review}} 30. ^{{cite journal |vauthors=Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A |title=Spectrum of gluten-related disorders: consensus on new nomenclature and classification |journal=BMC Medicine |volume=10 |issue= |pages=13 |year=2012 |pmid=22313950 |pmc=3292448 |doi=10.1186/1741-7015-10-13 |type=Review}} {{open access}} 31. ^{{cite journal|vauthors=Volta U, Caio G, Tovoli F, De Giorgio R|title=Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness|journal=Cellular and Molecular Immunology|volume=10|issue=5|year=2013|pages=383–392|issn=1672-7681|doi=10.1038/cmi.2013.28|pmid=23934026|type=Review|pmc=4003198}} 32. ^{{cite journal|vauthors=Guandalini S, Polanco I|title=Nonceliac gluten sensitivity or wheat intolerance syndrome?|journal=J Pediatr|volume=166|issue=4|pages=805–11|date=Apr 2015|pmid=25662287|doi=10.1016/j.jpeds.2014.12.039|type=Review|quote=The increase in world-wide consumption of a Mediterranean diet, which includes a wide range of wheat-based foods, has possibly contributed to an alarming rise in the incidence of wheat (gluten?)-related disorders.1, 2 }} 33. ^1 {{cite journal |vauthors=Volta U, Caio G, Tovoli F, De Giorgio R |title=Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness |journal=Cellular & Molecular Immunology |volume=10 |issue=5 |pages=383–92 | date=September 2013 |pmid=23934026 |pmc=4003198 |doi=10.1038/cmi.2013.28 |type=Review | quote = mechanization of farming and the growing industrial use of pesticides have favored the development of new types of wheat with a higher amount of toxic gluten peptides that cause the development of gluten-related disorders}} 34. ^{{cite journal|author=Belderok B|title=Developments in bread-making processes |journal=Plant Foods Hum Nutr |volume=55 |issue=1 |pages=1–86 |date=2000 |pmid=10823487|doi=10.1023/A:1008199314267|type=Review}} 35. ^{{cite journal|vauthors=Gobbetti M, Giuseppe Rizzello C, Di Cagno R, De Angelis M |title=Sourdough lactobacilli and celiac disease |journal=Food Microbiol |volume=24 |issue=2 |pages=187–96 |date=Apr 2007 |pmid=17008163 |doi= 10.1016/j.fm.2006.07.014|type=Review}} 36. ^1 {{cite web|url=http://www.worldgastroenterology.org/guidelines/global-guidelines/celiac-disease/celiac-disease-english|title=Celiac disease|date=July 2016|publisher=World Gastroenterology Organisation Global Guidelines|accessdate=23 April 2017}} 37. ^1 {{cite journal|last1=Fasano|first1=A|last2=Catassi|first2=C|title=Clinical practice. Celiac disease.|journal=The New England Journal of Medicine|date=Dec 20, 2012|volume=367|issue=25|pages=2419–26|pmid=23252527|doi=10.1056/NEJMcp1113994}} 38. ^{{cite journal | vauthors = Bold J, Rostami K| title = Gluten tolerance; potential challenges in treatment strategies | journal = Gastroenterol Hepatol Bed Bench | volume = 4| issue = 2| pages = 53–7| date = 2011 | pmid = 24834157|pmc= 4017406}} 39. ^1 {{cite journal|vauthors=Lundin KE, Wijmenga C|title=Coeliac disease and autoimmune disease-genetic overlap and screening|journal=Nat Rev Gastroenterol Hepatol|volume=12|issue=9|pages=507–15|date =Sep 2015|pmid=26303674|doi=10.1038/nrgastro.2015.136}} 40. ^1 2 3 {{cite journal | author = Fasano A| title = Clinical presentation of celiac disease in the pediatric population | journal = Gastroenterology | volume = 128| issue = 4 Suppl 1| pages = S68–73| date = Apr 2005| pmid = 15825129 |pmc= | doi = 10.1053/j.gastro.2005.02.015}} 41. ^1 2 {{cite journal | vauthors = Elli L, Branchi F, Tomba C, Villalta D, Norsa L, Ferretti F, Roncoroni L, Bardella MT| title = Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity | journal = World J Gastroenterol | volume = 21 | issue = 23 | pages = 7110–9 | date = Jun 2015 | pmid = 26109797 |pmc= 4476872 | doi = 10.3748/wjg.v21.i23.7110}} 42. ^1 2 3 4 5 {{cite journal | vauthors = Ludvigsson JF, Card T, Ciclitira PJ, Swift GL, Nasr I, Sanders DS, Ciacci C| title = Support for patients with celiac disease: A literature review | journal = United European Gastroenterol J | volume = 3 | issue = 2 | pages = 146–59 | date = Apr 2015 | pmid = 25922674 | pmc = 4406900 |doi = 10.1177/2050640614562599}} 43. ^1 {{cite journal | vauthors =Lebwohl B, Ludvigsson JF, Green PH | title = Celiac disease and non-celiac gluten sensitivity | journal = BMJ | volume = 351 | pages = h4347| date = Oct 2015 | pmid = 26438584|pmc= 4596973 | doi = 10.1136/bmj.h4347|type= Review }} 44. ^1 {{cite journal | vauthors = Lundin KE, Wijmenga C| title = Coeliac disease and autoimmune disease-genetic overlap and screening| journal = Nat Rev Gastroenterol Hepatol| volume = 12| issue = 9| pages = 507–15| date = Sep 2015 | pmid = 26303674 | doi = 10.1038/nrgastro.2015.136}} 45. ^{{cite journal |vauthors=Vriezinga SL, Schweizer JJ, Koning F, Mearin ML |title=Coeliac disease and gluten-related disorders in childhood |journal=Nature Reviews. Gastroenterology & Hepatology |volume= 12 |issue= 9 |pages= 527–36 |year= Sep 2015 |pmid=26100369 |doi=10.1038/nrgastro.2015.98 |type=Review}} 46. ^{{cite journal|last1=Mooney|first1=P|last2=Aziz|first2=I|last3=Sanders|first3=D|title=Non-celiac gluten sensitivity: clinical relevance and recommendations for future research|journal=Neurogastroenterology & Motility|date=2013|volume=25|issue=11|pages=864–871|doi=10.1111/nmo.12216|pmid=23937528}} 47. ^{{cite journal|last1=Nijeboer|first1=P|last2=Bontkes|first2=H|last3=Mulder|first3=C|last4=Bouma|first4=G|title=Non-celiac gluten sensitivity. Is it in the gluten or the grain?|journal=Journal of Gastrointestinal and Liver Disorders|date=2013|volume=22|issue=4|pages=435–40|pmid=24369326}} 48. ^1 2 3 4 {{cite journal | vauthors = Fasano A, Sapone A, Zevallos V, Schuppan D| title = Nonceliac gluten sensitivity | journal = Gastroenterology | volume = 148| issue = 6| pages = 1195–204| date = May 2015| pmid = 25583468 | doi = 10.1053/j.gastro.2014.12.049|url=http://www.clinicalnutritionjournal.com/article/S0261-5614(14)00218-0/fulltext}} 49. ^{{cite journal | author = Czaja-Bulsa G | title = Non coeliac gluten sensitivity - A new disease with gluten intolerance | journal = Clin Nutr | volume = 34| issue = 2| pages = 189–94| date = Apr 2015| pmid = 25245857 | doi = 10.1016/j.clnu.2014.08.012}} 50. ^{{cite journal | vauthors = Molina-Infante J, Santolaria S, Montoro M, Esteve M, Fernández-Bañares F| title = [Non-celiac gluten sensitivity: a critical review of current evidence] [Article in Spanish] | journal = Gastroenterol Hepatol | volume = 37| issue = 6 | pages = 362–71 | date = 2014 | pmid = 24667093 | doi = 10.1016/j.gastrohep.2014.01.005}} 51. ^{{cite journal|vauthors=Igbinedion SO, Ansari J, Vasikaran A, Gavins FN, Jordan P, Boktor M, Alexander JS |title=Non-celiac gluten sensitivity: All wheat attack is not celiac |journal=World Journal of Gastroenterology |volume=23 |issue=20 |pages=7201–7210 |date=Oct 2017 |pmid=29142467 |pmc=5677194 |doi=10.3748/wjg.v23.i40.7201 | type=Review }} 52. ^{{cite journal| vauthors=Verdu EF, Armstrong D, Murray JA| title=Between celiac disease and irritable bowel syndrome: the "no man's land" of gluten sensitivity | journal=Am J Gastroenterol | year= 2009 | volume= 104 | issue= 6 | pages= 1587–94 | pmid=19455131 | doi=10.1038/ajg.2009.188 | pmc=3480312 | type= Review }} 53. ^{{cite journal|last1=Mansueto|first1=Pasquale|last2=Seidita|first2=Aurelio|last3=D'Alcamo|first3=Alberto|last4=Carroccio|first4=Antonio|title=Non-Celiac Gluten Sensitivity: Literature Review|journal=Journal of the American College of Nutrition|volume=33|issue=1|year=2014|pages=39–54|issn=0731-5724|doi=10.1080/07315724.2014.869996|pmid=24533607|type=Review|hdl=10447/90208|url=https://iris.unipa.it/bitstream/10447/90208/1/Journal%20of%20the%20Americal%20College%20of%20Nutrition%202014%2033%2039-54.pdf}} 54. ^1 2 3 {{cite journal | vauthors = Catassi C, Bai JC, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J, Francavilla R, Elli L, Green P, Holtmeier W, Koehler P, Koletzko S, Meinhold C, Sanders D, Schumann M, Schuppan D, Ullrich R, Vécsei A, Volta U, Zevallos V, Sapone A, Fasano A| title = Non-Celiac Gluten sensitivity: the new frontier of gluten related disorders | journal = Nutrients | volume = 5| issue = 10| pages = 3839–53| date = Sep 2013 | pmid =24077239 |pmc= 3820047| doi = 10.3390/nu5103839}} 55. ^{{cite journal | vauthors = Elli L, Roncoroni L, Bardella MT| title = Non-celiac gluten sensitivity: Time for sifting the grain | journal = World J Gastroenterol | volume = 21| issue = 27| pages = 8221–6| date = Jul 2015 | pmid = 26217073 |pmc= 4507091 | doi = 10.3748/wjg.v21.i27.8221|type= Review }} 56. ^{{cite journal | vauthors = Volta U, Caio G, De Giorgio R, Henriksen C, Skodje G, Lundin KE| title = Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders | journal = Best Pract Res Clin Gastroenterol | volume = 29| issue = 3| pages = 477–91| date = Jun 2015| pmid = 26060112 | doi = 10.1016/j.bpg.2015.04.006}} 57. ^{{cite journal |last1=Verbeke |first1=K |title=Nonceliac Gluten Sensitivity: What Is the Culprit? |journal=Gastroenterology |date=February 2018 |volume=154 |issue=3 |pages=471-473 |doi=10.1053/j.gastro.2018.01.013 |pmid=29337156| quote=Although intolerance to fructans and other FODMAPs may contribute to NCGS, they may only explain gastrointestinal symptoms and not the extraintestinal symptoms observed in NCGS patients, such as neurologic dysfunction, psychological disturbances, fibromyalgia, and skin rash.15 Therefore, it is unlikely that they are the sole cause of NCGS.}} 58. ^1 {{cite journal| vauthors=Volta U, De Giorgio R, Caio G, Uhde M, Manfredini R, Alaedini A| title=Nonceliac Wheat Sensitivity: An Immune-Mediated Condition with Systemic Manifestations | journal=Gastroenterol Clin North Am | date= March 2019 | volume= 48 | issue= 1 | pages= 165-182 | pmid=30711208 | doi=10.1016/j.gtc.2018.09.012 | pmc=6364564 | type=Review |quote=Furthermore, a role for the FODMAP (eg, fructans) component of wheat as the sole trigger for symptoms is somewhat doubtful, because many patients with NCWS report resolution of symptoms after the withdrawal of wheat and related cereals, while continuing to ingest vegetables and fruits with high FODMAP content in their diets.59 On the whole, it is conceivable that more than one culprit may be involved in symptoms of NCWS (as they are currently defined), including gluten, other wheat proteins, and FODMAPs.60–62 }} 59. ^{{cite journal|last1=Barone|first1=Maria|last2=Troncone|first2=Riccardo|last3=Auricchio|first3=Salvatore|title=Gliadin Peptides as Triggers of the Proliferative and Stress/Innate Immune Response of the Celiac Small Intestinal Mucosa|journal=International Journal of Molecular Sciences|volume=15|issue=11|year=2014|pages=20518–20537|issn=1422-0067|doi=10.3390/ijms151120518|pmid=25387079|type=Review|pmc=4264181}} 60. ^{{cite journal|last1=Junker|first1=Y.|last2=Zeissig|first2=S.|last3=Kim|first3=S.-J.|last4=Barisani|first4=D.|last5=Wieser|first5=H.|last6=Leffler|first6=D. A.|last7=Zevallos|first7=V.|last8=Libermann|first8=T. A.|last9=Dillon|first9=S.|last10=Freitag|first10=T. L.|last11=Kelly|first11=C. P.|last12=Schuppan|first12=D.|authorlink12=Detlef Schuppan|title=Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4|journal=Journal of Experimental Medicine|volume=209|issue=13|year=2012|pages=2395–2408|issn=0022-1007|doi=10.1084/jem.20102660|pmid=23209313|pmc=3526354}} 61. ^{{cite web|url=http://www.cureceliacdisease.org/archives/faq/what-is-the-difference-between-gluten-intolerance-gluten-sensitivity-and-wheat-allergy|publisher=The University of Chicago Celiac Disease Center|title=What's the difference between celiac disease, gluten intolerance, non-celiac gluten sensitivity and wheat allergy?|date=2015|accessdate=4 January 2015}} 62. ^{{cite web |url=http://www.food.gov.uk/multimedia/pdfs/allergyfactsheettwo.pdf |title=Food intolerance and coeliac disease |publisher=Food Standards Agency |date=September 2006 |accessdate=8 September 2009}} 63. ^{{cite journal | vauthors = Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A | title = Spectrum of gluten-related disorders: consensus on new nomenclature and classification | journal = BMC Medicine | volume = 10 | issue = | pages = 13 | year = 2012 | pmid = 22313950 | pmc = 3292448 | doi = 10.1186/1741-7015-10-13 | type = Review }} 64. ^{{cite journal| vauthors=Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, Hadjivassiliou M, Hampe CS et al.| title=Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias | journal=Cerebellum | year= 2016 | volume= 15 | issue= 2 | pages= 213–32 | pmid=25823827 | doi=10.1007/s12311-015-0664-x | pmc=4591117 | type=Review }} 65. ^1 2 3 {{cite journal| vauthors=Hadjivassiliou M, Sanders DD, Aeschlimann DP| title=Gluten-related disorders: gluten ataxia | journal=Dig Dis | year= 2015 | volume= 33 | issue= 2 | pages= 264–8 | pmid=25925933 | doi=10.1159/000369509 | type=Review }} 66. ^{{cite journal | vauthors = Hadjivassiliou M, Grünewald R, Sharrack B, Sanders D, Lobo A, Williamson C, Woodroofe N, Wood N, Davies-Jones A | title = Gluten ataxia in perspective: epidemiology, genetic susceptibility and clinical characteristics | journal = Brain | volume = 126 | issue = Pt 3 | pages = 685–91 | date = March 2003 | pmid = 12566288 | doi = 10.1093/brain/awg050 | doi-access = free }} 67. ^1 2 3 4 {{cite journal| vauthors=Zis P, Hadjivassiliou M| title=Treatment of Neurological Manifestations of Gluten Sensitivity and Coeliac Disease. | journal=Curr Treat Options Neurol | year= 26 February 2019 | volume= 21 | issue= 3 | pages= 10 | pmid=30806821 | doi=10.1007/s11940-019-0552-7 | type=Review }} 68. ^{{cite journal| vauthors=Vinagre-Aragón A, Zis P, Grunewald RA, Hadjivassiliou M| title=Movement Disorders Related to Gluten Sensitivity: A Systematic Review | journal=Nutrients | year= 2018 | volume= 10 | issue= 8 | pages= | pmid=30096784 | doi=10.3390/nu10081034 | pmc=6115931 | type=Review }} 69. ^1 {{cite journal| vauthors=Leonard MM, Sapone A, Catassi C, Fasano A| title=Celiac Disease and Nonceliac Gluten Sensitivity: A Review | journal=JAMA | year= 2017 | volume= 318 | issue= 7 | pages= 647-656 | pmid=28810029 | doi=10.1001/jama.2017.9730 | type=Review | quote=Previous studies have shown that gliadin can cause an immediate and transient increase in gut permeability. This permeating effect is secondary to the binding of specific undigestible gliadin fragments to the CXCR3 chemokine receptor with subsequent release of zonulin, a modulator of intercellular tight junctions. This process takes place in all individuals who ingest gluten. For the majority, these events do not lead to abnormal consequences. However, these same events can lead to an inflammatory process in genetically predisposed individuals when the immunologic surveillance system mistakenly recognizes gluten as a pathogen. }} 70. ^1 2 {{cite journal | author = Fasano A | date = Jan 2011 | title = Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer | url = | journal = Physiol. Rev. | volume = 91 | issue = 1| pages = 151–75 | doi = 10.1152/physrev.00003.2008 | pmid = 21248165 | type = Review| citeseerx = 10.1.1.653.3967 }} 71. ^1 {{Cite journal|last=Suzuki|first=Takuya|date=2013-02-01|title=Regulation of intestinal epithelial permeability by tight junctions|journal=Cellular and Molecular Life Sciences|language=en|volume=70|issue=4|pages=631–659|doi=10.1007/s00018-012-1070-x|pmid=22782113|issn=1420-682X}} 72. ^{{cite web|url=http://www.codexalimentarius.org/download/standards/291/cxs_118e.pdf|publisher=Codex Alimentarius|title=Codex Standard For "Gluten-Free Foods" CODEX STAN 118-1981|date=February 22, 2006}} 73. ^{{cite web |url=http://e-legis.anvisa.gov.br/leisref/public/showAct.php?id=32 |date=July 2014 |title=General labeling for Packaged Foods (free translation) |publisher=ANVISA}} 74. ^{{cite web|url=http://www.celiac.ca/?page_id=882|title=About celiac disease|date=2014|publisher=Canadian Celiac Association}} 75. ^{{cite web|url=http://www.hc-sc.gc.ca/fn-an/securit/allerg/cel-coe/gluten-position-eng.php|title=Health Canada's Position on Gluten-Free Claims|date=29 June 2012|publisher=Health Canada|accessdate=28 January 2015}} 76. ^1 {{cite web |url= https://www.food.gov.uk/business-industry/allergy-guide/labelling-of-gluten-free-foods |date=31 October 2016 | title=Labelling of 'gluten free' foods | publisher=Food Standards Agency |format=PDF}} 77. ^{{cite web|url=https://www.food.gov.uk/science/allergy-intolerance/label/labelling-changes|title=EU Food Information for Consumers Regulation (EU FIC) |date=March 2016|publisher=Food Standards Agency|format=link}} 78. ^{{cite web|url=http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Allergens/ucm362880.htm|publisher=US Food and Drug Administration|title=Questions and Answers: Gluten-Free Food Labeling Final Rule|date=5 August 2014|accessdate=4 January 2015}} Further reading
|last1 = Curtis |first1 = B.C. |last2 = Rajaram |first2 = S. |last3 = Macpherson |first3 = H.G. |title = Bread Wheat, Improvement and production — FAO Plant Production and Protection Series No. #30. |url = http://www.fao.org/DOCREP/006/Y4011E/y4011e05.htm |accessdate = 2007-08-21 |postscript = }}
|title = Marker Assisted Selection in Wheat, Quality traits. Gluten Strength, Coordinated Agricultural Project (funded by USDACREES) |url = http://maswheat.ucdavis.edu/protocols/gluten/index.htm |accessdate = 2007-09-29 |postscript = }}{{Barley}}{{Wheat}} 3 : Gluten|Nutrition|Seed storage proteins |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。