词条 | Akhiezer's theorem |
释义 |
In the mathematical field of complex analysis, Akhiezer's theorem is a result about entire functions proved by Naum Akhiezer.[1] StatementLet {{math|f(z)}} be an entire function of exponential type {{math|τ}}, with {{math|f(x) ≥ 0}} for real {{math|x}}. Then the following are equivalent:
where {{math|zn}} are the zeros of {{math|f}}. Related resultsIt is not hard to show that the Fejér–Riesz theorem is a special case.[2] Notes1. ^see {{harvtxt|Akhiezer|1948}}. 2. ^see {{harvtxt|Boas|1954}} and {{harvtxt|Boas|1944}} for references. References
| last = Boas | first = Jr., Ralph Philip | title = Entire functions | publisher = Academic Press Inc. | location = New York | year = 1954 | pages = 124–132 }}
| last = Boas | first = Jr., R. P. | title = Functions of exponential type. I | journal = Duke Math. J. | volume = 11 | year = 1944 | pages = 9–15 | issn = 0012-7094 | doi=10.1215/s0012-7094-44-01102-6 }}
| last = Akhiezer | first = N. I. | title = On the theory of entire functions of finite degree | journal = Doklady Akademii Nauk SSSR (N.S.) | volume = 63 | year = 1948 | pages = 475–478 | mr = 0027333 }} 1 : Theorems in complex analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。