请输入您要查询的百科知识:

 

词条 Alternated hypercubic honeycomb
释义

  1. References


An alternated square tiling or checkerboard pattern.
{{CDD|node_h1|4|node|4|node}} or {{CDD|nodes|split2-44|node_1}}

An expanded square tiling.
{{CDD|nodes_11|split2-44|node}}

A partially filled alternated cubic honeycomb with tetrahedral and octahedral cells.
{{CDD|node_h1|4|node|3|node|4|node}} or {{CDD|nodes_10ru|split2|node|4|node}}

A subsymmetry colored alternated cubic honeycomb.
{{CDD|node_1|split1|nodes|split2|node}}

In geometry, the alternated hypercube honeycomb (or demicubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a Schläfli symbol h{4,3...3,4} representing the regular form with half the vertices removed and containing the symmetry of Coxeter group for n ≥ 4. A lower symmetry form can be created by removing another mirror on an order-4 peak.[1]

The alternated hypercube facets become demihypercubes, and the deleted vertices create new orthoplex facets. The vertex figure for honeycombs of this family are rectified orthoplexes.

These are also named as hδn for an (n-1)-dimensional honeycomb.

nNameSchläfli
symbol
Symmetry family

[4,3n-4,31,1]

[31,1,3n-5,31,1]
Coxeter-Dynkin diagrams by family
2 Apeirogon{∞}node_h1|infin|node}}
{{CDD|node_1|infin|node_1}}
3 Alternated square tiling
(Same as {4,4})
h{4,4}=t1{4,4}
t0,2{4,4}
node_h1|4|node|4|node}}
{{CDD|nodes_hh|split2-44|node}}
{{CDD|nodes|split2-44|node_1}}
nodes_11|split2-44|node}}
4 Alternated cubic honeycomb h{4,3,4}
{31,1,4}
node_h1|4|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|branch}}
{{CDD|nodes_10ru|split2|node|4|node}}
node_1|split1|nodes|split2|node}}
5 16-cell tetracomb
(Same as {3,3,4,3})
h{4,32,4}
{31,1,3,4}
{31,1,1,1}
node_h1|4|node|3|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|nodes|split2|node}}
{{CDD|nodes_10ru|split2|node|3|node|4|node}}
nodes_10ru|split2|node|split1|nodes}}
6 5-demicube honeycomb h{4,33,4}
{31,1,32,4}
{31,1,3,31,1}
node_h1|4|node|3|node|3|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|nodes|3ab|branch}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|4|node}}
nodes_10ru|split2|node|3|node|split1|nodes}}
7 6-demicube honeycomb h{4,34,4}
{31,1,33,4}
{31,1,32,31,1}
node_h1|4|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|nodes|3ab|nodes|split2|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|4|node}}
nodes_10ru|split2|node|3|node|3|node|split1|nodes}}
8 7-demicube honeycomb h{4,35,4}
{31,1,34,4}
{31,1,33,31,1}
node_h1|4|node|3|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|nodes|3ab|nodes|3ab|branch}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|4|node}}
nodes_10ru|split2|node|3|node|3|node|3|node|split1|nodes}}
9 8-demicube honeycombh{4,36,4}
{31,1,35,4}
{31,1,34,31,1}
node_h1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|nodes_hh|4a4b|nodes|3ab|nodes|3ab|nodes|split2|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}}
nodes_10ru|split2|node|3|node|3|node|3|node|3|node|split1|nodes}}
 
n n-demicubic honeycombh{4,3n-3,4}
{31,1,3n-4,4}
{31,1,3n-5,31,1}
...

References

1. ^Regular and semi-regular polytopes III, p.318-319
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}}
  • # pp. 122–123, 1973. (The lattice of hypercubes γn form the cubic honeycombs, δn+1)
  • # pp. 154–156: Partial truncation or alternation, represented by h prefix: h{4,4}={4,4}; h{4,3,4}={31,1,4}, h{4,3,3,4}={3,3,4,3}
  • # p. 296, Table II: Regular honeycombs, δn+1
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
{{Honeycombs}}

2 : Honeycombs (geometry)|Polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 1:38:24