请输入您要查询的百科知识:

 

词条 ANGPTL4
释义

  1. Structure

  2. Expression

  3. Function

  4. Clinical significance

  5. References

  6. External links

  7. Further reading

{{Infobox_gene}}

Angiopoietin-like 4 is a protein that in human is encoded by the ANGPTL4 gene.[1][2][3] Alternatively spliced transcript variants encoding different isoforms have been described. This gene was previously referred to as ANGPTL2, HFARP, PGAR, or FIAF but has been renamed ANGPTL4.

Structure

This gene is a member of the angiopoietin-like gene family and encodes a glycosylated, secreted protein with a coiled-coil N-terminal domain and a fibrinogen-like C-terminal domain.[4]

Expression

In mice, highest mRNA expression levels of ANGPTL4 are found in white and brown adipose tissue, followed by liver, kidney, muscle and intestine. Human ANGPTL4 is most highly expressed in liver.

Function

This gene is induced under hypoxic (low oxygen) condition in various cell types and is the target of Peroxisome proliferator-activated receptors. The encoded protein is a serum hormone directly involved in regulating lipid metabolism. The native full length ANGPTL4 can form higher order structures via intermolecular disulfide bonds. The N-terminal region of ANGPTL4 (nANGPTL4) is responsible for its assembly. The full length ANGPTL4 undergoes proteolytic cleavage at the linker region, releasing nANGPTL4 and the monomeric C-terminal portion of ANGPTL4 (cANGPTL4). The nANGPTL4 and cANGPTL4 have different biological functions.[4] Monoclonal antibodies targeting the nANGPTL4[5] and cANGPTL4[6] have been developed to distinguish their functions.

Clinical significance

ANGPTL4 plays an important role in numerous cancers and is implicated in the metastatic process by modulating vascular permeability, cancer cell motility and invasiveness.[7][8][9] ANGPTL4 contributes to tumor growth and protects cells from anoikis, a form of programmed cell death induced when contact-dependent cells detach from the surrounding tissue matrix.[6] ANGPTL4 secreted from tumors can bind to integrins, activating downstream signaling and leading to the production of superoxide to promote tumorigenesis.[10] ANGPTL4 disrupts endothelial cell junctions by directly interacting with integrin, VE-cadherin and claudin-5 in a sequential manner to facilitate metastasis.[11] ANGPTL4 functions as a matricellular protein[12] to facilitate skin wound healing. ANGPTL4-deficient mice exhibit delayed wound reepithelialization with impaired keratinocyte migration, angiogenesis and altered inflammatory response.[13][14] ANGPTL4 induces nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of iNOS expression in wound epithelia, and enhances angiogenesis to accelerate wound healing in diabetic mice.[15] Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via TGF-β and HIF-1α signalling, and the released ANGPTL4 was pro-angiogenic.[16] ANGPTL4 is also a potent angiogenic factor whose expression is up-regulated in hypoxic retinal Müller cells in vitro and the ischemic retina in vivo. The expression of ANGPTL4 was increased in the aqueous and vitreous of proliferative diabetic retinopathy patients and localized to areas of retinal neovascularization.[17]

ANGPTL4 has been established as a potent inhibitor of serum triglyceride (TG) clearance, causing elevation of serum TG levels via inhibition of the enzyme lipoprotein lipase (LPL). Biochemical studies indicate that ANGPTL4 disables LPL partly by dissociating the catalytically active LPL dimer into inactive LPL monomers.[18] However, evidence also suggests that ANGPTL4 functions as a conventional, non-competitive inhibitor that binds to LPL to prevent the hydrolysis of substrate as part of reversible mechanism.[19] As a consequence, ANGPTL4 knockout mice have reduced serum triglyceride levels, whereas the opposite is true for mice over-expressing ANGPTL4. ANGPTL4 suppresses foam cell formation to reduce atherosclerosis development.[20] The reduction in LPL activity in adipose tissue during fasting is likely caused by increased local production of ANGPTL4. In other tissues such as heart, production of ANGPTL4 is stimulated by fatty acids and may serve to protect cells against excess fat uptake.[21] ANGPTL4 is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise. ANGPTL4 in nonexercising muscle presumably leads to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. The induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the use of plasma triglycerides as fuel for active muscles.[22]

High-throughput RNA sequencing of lung tissue samples from the 1918 and 2009 influenza pandemic revealed that ANGPTL4 was one of the most significantly upregulated gene.[23] Murine influenza infection of the lungs stimulated the expression of ANGPTL4 via a STAT3-mediated mechanism. ANGPTL4 enhanced pulmonary tissue leakiness and exacerbated inflammation-induced lung damage. Influenza-infected ANGPTL4-knockout mice displayed diminished lung damage and recovered faster from the infection compared to wild-type mice. The treatment of infected mice with neutralizing anti-ANGPTL4 antibodies significantly accelerated pulmonary recovery and improved lung tissue integrity.[24]

References

1. ^{{cite journal |vauthors=Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH, Koh GY | title = Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis | journal = Biochem J | volume = 346 | issue = Pt 3 | pages = 603–10 |date=May 2000 | pmid = 10698685 | pmc = 1220891 | doi = 10.1042/0264-6021:3460603}}
2. ^{{cite journal |vauthors=Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM | title = Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation | journal = Mol Cell Biol | volume = 20 | issue = 14 | pages = 5343–5349 |date=Jul 2000 | pmid = 10866690 | pmc = 85983 | doi =10.1128/MCB.20.14.5343-5349.2000}}
3. ^{{cite journal |vauthors=Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W | title = Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene| journal = J. Biol. Chem. | volume = 275 | issue = 37 | pages = 28488–93 |date=Sep 2000 | pmid = 10862772 | doi = 10.1074/jbc.M004029200 }}
4. ^{{cite journal |vauthors=Zhu P, Goh YY, Chin HF, Kersten S, Tan NS | title = Angiopoietin-like 4: a decade of research | journal = Biosci. Rep. | volume = 32 | issue = 3 | pages = 211–9 | year = 2012 | pmid = 22458843 | doi = 10.1042/BSR20110102 }}
5. ^{{cite journal | vauthors = Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, Schneider M, Van Sligtenhorst I, Suwanichkul A, Vogel P, Wilganowski N, Wingert J, Zambrowicz BP, Landes G, Powell DR | author8-link = Machajewski D | title = Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice | journal = Proc Natl Acad Sci U S A | volume = 104 | issue = 28 | pages = 11766–11771 | year = 2007 | pmid = 17609370 | doi = 10.1073/pnas.0705041104 | pmc=1913890}}
6. ^{{cite journal |vauthors=Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, Kersten S, Li HY, Ding JL, Tan NS | title = Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors | journal = Cancer Cell | volume = 19 | issue = 3 | pages = 401–415 | year = 2011 | pmid = 21397862 | doi = 10.1016/j.ccr.2011.01.018}}
7. ^{{cite journal |vauthors=Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J | title = TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4 | journal = Cell | volume = 133 | issue = 1 | pages = 66–77 | year = 2008 | pmid = 18394990 | doi = 10.1016/j.cell.2008.01.046 | pmc=2390892}}
8. ^{{cite journal |vauthors=Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN | title = ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression | journal = Cancer Res. | volume = 71 | pages = 7010–7020 | year = 2011 | pmid = 21937683 | doi = 10.1158/0008-5472.CAN-11-1262 | issue=22 | pmc=3217078}}
9. ^{{cite journal |vauthors=Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, Finkernagel F, Obert J, Lieber S, Scharfe M, Jarek M, Toth PM, Scheer F, Diederich WE, Reinartz S, Grosse R, Müller-Brüsselbach S, Müller R | title = Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion | journal = Oncogene | year = 2012 | pmid = 23208498 | doi = 10.1038/onc.2012.549 | volume=32 | issue=44 | pages=5241–52 | pmc=3938163}}
10. ^{{cite journal |vauthors=Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS | title = Emerging Roles of Angiopoietin-like 4 in Human Cancer | journal = Mol. Cancer Res. | volume = 10 | issue = 6 | pages = 1–12 | year = 2012 | pmid = 22661548 | doi=10.1158/1541-7786.MCR-11-0519}}
11. ^{{cite journal |vauthors=Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK, Lam CR, Sng MK, Leong DT, Tan SM, Kersten S, Ding JL, Li HY, Tan NS | title = ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters | journal = Blood | volume = 118 | issue = 14 | pages = 3990–4002| year = 2011 | pmid = 21841165 | doi = 10.1182/blood-2011-01-328716}}
12. ^{{cite journal |vauthors=Chong HC, Tan CK, Huang RL, Tan NS | title = Matricellular proteins: a sticky affair with cancers | journal = J. Oncol. | volume = 2012 | pages = 351089 |date=Feb 2012 | pmid = 22481923 | doi = 10.1155/2012/351089 | pmc = 3306981 }}
13. ^{{cite journal |vauthors=Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Lam CR, Yau YH, Tan CK, Huang RL, Tan SM, Tang MB, Ding JL, Kersten S, Tan NS | title = Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration | journal = Am J Pathol | volume = 177 | issue = 6 | pages = 2791–2803 | year = 2010 | pmid = 20952587 | doi = 10.2353/ajpath.2010.100129 | pmc=2993291}}
14. ^{{cite journal |vauthors=Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang RL, Sze SK, Tang MB, Ding JL, Kersten S, Tan NS | title = Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing | journal = J Biol Chem | volume = 285 | issue = 43 | pages = 32999–33009 | year = 2010 | pmid = 20729546 | doi = 10.1074/jbc.M110.108175 | pmc=2963335}}
15. ^{{cite journal |vauthors=Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, Foo S, Wong MT, Choong C, Kersten S, Tan NS | title = Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice | journal = Mol. Ther. | year=2014 | pmid=24903577 | pmc = 4435481 | doi = 10.1038/mt.2014.102 | volume=22 | issue = 9 | pages=1593–1604}}
16. ^{{cite journal |vauthors=Mousavizadeh R, Scott A, Lu A, Ardekani GS, Behzad H, Lundgreen K, Ghaffari M, McCormack RG, Duronio V | title = Angiopoietin-like 4 (ANGPTL4) promotes angiogenesis in tendon and is increased in cyclically loaded tendon fibroblasts| journal = J. Physiol. | year=2015 | pmid=26670924 | pmc = 4887665| doi = 10.1113/JP271752 | volume=594 | issue = 11| pages=2971–83}}
17. ^{{cite journal |vauthors=Babapoor-Farrokhran S, Jee K, Puchner B, Hassan SJ, Xin X, Rodrigues M, Kashiwabuchi F, Ma T, Hu K, Deshpande M, Daoud Y, Solomon S, Wenick A, Lutty GA, Semenza GL, Montaner S, Sodhi A | title = Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy| journal = Proc Natl Acad Sci U S A | year=2015 | pmid=26039997 | doi = 10.1073/pnas.1423765112 | volume=112 | issue = 23| pages=E3030–9 | pmc=4466723}}
18. ^{{cite journal |vauthors=Sukonina V, Lookene A, Olivecrona T, Olivecrona G | title = Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue | journal = Proc. Natl. Acad. Sci. U.S.A. | pmid = 17088546 | doi = 10.1073/pnas.0604026103| volume= 103| issue=46 | year=2006 | pages=17450–5 | pmc=1859949}}
19. ^{{cite journal |vauthors=Lafferty MJ, Bradford KC, Erie DA, Neher SB | title = Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation | journal = J. Biol. Chem. | pmid = 23960078 | doi = 10.1074/jbc.M113.497602| volume= 288| issue= 40|date=Jul 2013 | pages=28524–34 | pmc=3789953}}
20. ^{{cite journal |vauthors=Georgiadi A, Wang Y, Stienstra R, Tjeerdema N, Janssen A, Stalenhoef A, van der Vliet JA, de Roos A, Tamsma JT, Smit JW, Tan NS, Müller M, Kersten S | title = Overexpression of Angiopoietin-like Protein 4 Protects Against Atherosclerosis | journal = Arterioscler. Thromb. Vasc. Biol. | pmid = 23640487 | doi = 10.1161/ATVBAHA.113.301698| volume= 33| issue= 7|date=Oct 2013 | pages=1529–37}}
21. ^{{cite journal |vauthors=Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M, Kersten S | title = Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress | journal = Circ. Res. | volume=106 | issue = 11 | pages=1712–1721 | year=2010 | pmid=20378851 | doi = 10.1161/CIRCRESAHA.110.217380}}
22. ^{{cite journal |vauthors=Catoire M, Alex S, Paraskevopulos N, Mattijssen F, Evers-van Gogh I, Schaart G, Jeppesen J, Kneppers A, Mensink M, Voshol PJ, Olivecrona G, Tan NS, Hesselink MK, Berbée JF, Rensen PC, Kalkhoven E, Schrauwen P, Kersten S | title = Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise | journal = Proc Natl Acad Sci U S A | volume=111 | issue = 11 | pages=E1043–52 | year=2014 | pmid=24591600 | doi = 10.1073/pnas.1400889111| pmc=3964070 }}
23. ^{{cite journal |vauthors=Xiao YL, Kash JC, Beres SB, Sheng ZM, Musser JM, Taubenberger JK | title = High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic | journal = J. Pathol. | pmid = 23180419| doi = 10.1002/path.4145| volume=229 | issue=4 |date=Mar 2013 | pages=535–45 | pmc=3731037}}
24. ^{{cite journal |vauthors=Li L, Chong HC, Ng SY, Kwok KW, Teo Z, Tan EH, Choo CC, Seet JE, Choi HW, Buist ML, Chow VT, Tan NS | title = Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia | journal = Cell Rep. | volume=10 | issue=5 |pages=654–663 | year=2015 | pmid=25660016 | doi=10.1016/j.celrep.2015.01.011}}

External links

  • {{UCSC gene info|ANGPTL4}}

Further reading

{{refbegin|35em}}
  • {{cite journal |vauthors=Alex S, Lichtenstein L, Dijk W, Mensink RP, Tan NS, Kersten S | title = ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract | journal = Histochem. Cell Biol. | volume = 141 | issue = 4 | pages = 383–91 | year = 2014 | pmid = 24141811 | doi = 10.1007/s00418-013-1157-y }}
  • {{cite journal |vauthors=Grootaert C, Van de Wiele T, Verstraete W, Bracke M, Vanhoecke B | title = Angiopoietin-like protein 4: health effects, modulating agents and structure-function relationships | journal = Expert Rev Proteomics. | volume = 9 | issue = 3 | pages = 181–199 | year = 2012 | pmid = 22462789 | doi = 10.1586/epr.12.12 }}
  • {{cite journal |vauthors=Terada LS, Nwariaku FE | title = Escaping Anoikis through ROS: ANGPTL4 controls integrin signaling through Nox1 | journal = Cancer Cell | volume = 19 | issue = 3 | pages = 297–299 | year = 2011 | pmid = 21397852 | doi = 10.1016/j.ccr.2011.02.019 }}
  • {{cite journal |vauthors=Pal M, Tan MJ, Huang RL, Goh YY, Wang XL, Tang MB, Tan NS | title = Angiopoietin-like 4 regulates epidermal differentiation | journal = PLoS ONE | volume = 6 | issue = 9 | pages = e25377 | year = 2011 | pmid = 21966511 | doi = 10.1371/journal.pone.0025377 | pmc=3178651}}
  • {{cite journal |vauthors=Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT, Tan NS, Müller M, Kersten S | title = Angptl4 Protects against Severe Proinflammatory Effects of Saturated Fat by Inhibiting Fatty Acid Uptake into Mesenteric Lymph Node Macrophages | journal = Cell Metabolism | volume = 12 | issue = 6 | pages = 580–592 | year = 2010 | pmid = 21109191 | pmc = 3387545 | doi = 10.1016/j.cmet.2010.11.002 }}
  • {{cite journal |vauthors=Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, Voshol PJ, Müller M, Rensen PC, Kersten S | title = Angptl4 up-regulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake | journal = Arterioscler Thromb Vasc Biol | volume = 27 | issue = 11 | pages = 2420–2427 | year = 2007 | pmid = 17761937 | doi = 10.1161/ATVBAHA.107.151894 }}
  • {{cite journal | author = Kersten S | title = Regulation of lipid metabolism via angiopoietin-like proteins | journal = Biochem. Soc. Trans. | volume = 33 | issue = Pt 5 | pages = 1059–62 | date = November 2005 | pmid = 16246045 | doi = 10.1042/BST20051059 }}
  • {{cite journal |vauthors=Le Jan S, Amy C, Cazes A, Monnot C, Lamandé N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S | title = Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma | journal = Am. J. Pathol. | volume = 162 | issue = 5 | pages = 1521–1528 | year = 2003 | pmid = 12707035 | pmc = 1851201 | doi = 10.1016/S0002-9440(10)64285-X }}
  • {{cite journal |vauthors=Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, Kleemann R, Bakker A, Veenman F, Wahli W, Müller M, Kersten S | title = The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment | journal = J. Biol. Chem. | volume = 279 | issue = 33 | pages = 34411–34420 | year = 2004 | pmid = 15190076 | doi = 10.1074/jbc.M403058200 }}
  • {{cite journal |vauthors=Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, Xu JY, Chen B, Chow WS, Tso AW, Lam KS | title = Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 102 | issue = 17 | pages = 6086–6091 | year = 2005 | pmid = 15837923 | pmc = 1087912 | doi = 10.1073/pnas.0408452102 }}
  • {{cite journal |vauthors=Hermann LM, Pinkerton M, Jennings K, Yang L, Grom A, Sowders D, Kersten S, Witte DP, Hirsch R, Thornton S | title = Angiopoietin-like-4 is a potential angiogenic mediator in arthritis | journal = Clin. Immunol. | volume = 115 | issue = 1 | pages = 93–101 | year = 2005 | pmid = 15870027 | doi = 10.1016/j.clim.2004.12.002 }}
  • {{cite journal | author = Zhang R | title = The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking | journal = Open Biol. | volume = 6 | issue = 4 | pages = 150272 | year = 2016 | pmid = 27053679| doi = 10.1098/rsob.150272| url = http://rsob.royalsocietypublishing.org/content/6/4/150272.long | pmc=4852456}}
{{refend}}
随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/27 12:27:38