请输入您要查询的百科知识:

 

词条 Graph manifold
释义

  1. References

In topology, a graph manifold (in German: Graphenmannigfaltigkeit) is a 3-manifold which is obtained by gluing some circle bundles. They were invented and classified by the German topologist Friedhelm Waldhausen in 1967. This definition allows a very convenient combinatorial description as a graph whose vertices are the fundamental parts and (decorated) edges stand for the description of the gluing, hence the name.

Two very important classes of examples are given by the Seifert bundles and the Solv manifolds. This leads to a more modern definition: a graph manifold is either a Solv manifold, a manifold having only Seifert pieces in its JSJ decomposition, or connect sums of the previous two categories. From this perspective, Waldhausen's article can be seen as the first breakthrough towards the discovery of JSJ decomposition.

One of the numerous consequences of the Thurston-Perelman geometrization theorem is that graph manifolds are precisely the 3-manifolds whose Gromov norm vanishes.

References

  • {{Citation | last1=Waldhausen | first1=Friedhelm | author1-link=Friedhelm Waldhausen | title=Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I | doi=10.1007/BF01402956 | mr=0235576 | year=1967 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=3 | issue=4 | pages=308–333}}
  • {{Citation | last1=Waldhausen | first1=Friedhelm | author1-link=Friedhelm Waldhausen | title=Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II | doi=10.1007/BF01425244 | mr=0235576 | year=1967 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=4 | issue=2 | pages=87–117}}
{{topology-stub}}

1 : 3-manifolds

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 3:37:58