请输入您要查询的百科知识:

 

词条 Artin algebra
释义

  1. Dual and transpose

  2. References

In algebra, an Artin algebra is an algebra Λ over a commutative Artin ring R that is a finitely generated R-module. They are named after Emil Artin.

Every Artin algebra is an Artin ring.

Dual and transpose

There are several different dualities taking finitely generated modules over Λ to modules over the opposite algebra Λop.

  • If M is a left Λ module then the right Λ-module M is defined to be HomΛ(M,Λ).
  • The dual D(M) of a left Λ-module M is the right Λ-module D(M) = HomR(M,J), where J is the dualizing module of R, equal to the sum of the injective envelopes of the non-isomorphic simple R-modules or equivalently the injective envelope of R/rad R. The dual of a left module over Λ does not depend on the choice of R (up to isomorphism).
  • The transpose Tr(M) of a left Λ-module M is a right Λ-module defined to be the cokernel of the map Q → P, where P → Q → M → 0 is a minimal projective presentation of M.

References

  • {{Citation | last1=Auslander | first1=Maurice | last2=Reiten | first2=Idun | last3=Smalø | first3=Sverre O. | title=Representation theory of Artin algebras | origyear=1995 | url=https://books.google.com/books?isbn=0521599237 | publisher=Cambridge University Press | series=Cambridge Studies in Advanced Mathematics | volume=36 | year=1997 | isbn=978-0-521-59923-8 | mr=1314422 | zbl=0834.16001 }}

1 : Ring theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 4:50:12