请输入您要查询的百科知识:

 

词条 Atomic emission spectroscopy
释义

  1. Flame emission spectroscopy

  2. Inductively coupled plasma atomic emission spectroscopy

  3. Spark and arc atomic emission spectroscopy

  4. See also

  5. References

  6. Bibliography

  7. External links

{{short description|Analytical method using radiation to identify chemical elements in a sample}}

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element

Flame emission spectroscopy

A sample of a material (analyte) is brought into the flame as a gas, sprayed solution, or directly inserted into the flame by use of a small loop of wire, usually platinum. The heat from the flame evaporates the solvent and breaks intramolecular bonds to create free atoms. The thermal energy also excites the atoms into excited electronic states that subsequently emit light when they return to the ground electronic state. Each element emits light at a characteristic wavelength, which is dispersed by a grating or prism and detected in the spectrometer.

A frequent application of the emission measurement with the flame is the regulation of alkali metals for pharmaceutical analytics.[1]

Inductively coupled plasma atomic emission spectroscopy

{{main|Inductively coupled plasma atomic emission spectroscopy}}

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) uses an inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element.[2][3]

Advantages of ICP-AES are excellent limit of detection and linear dynamic range, multi-element capability, low chemical interference and a stable and reproducible signal. Disadvantages are spectral interferences (many emission lines), cost and operating expense and the fact that samples typically must be in a liquid solution.

Spark and arc atomic emission spectroscopy

Spark or arc atomic emission spectroscopy is used for the analysis of metallic elements in solid samples. For non-conductive materials, the sample is ground with graphite powder to make it conductive. In traditional arc spectroscopy methods, a sample of the solid was commonly ground up and destroyed during analysis. An electric arc or spark is passed through the sample, heating it to a high temperature to excite the atoms within it. The excited analyte atoms emit light at characteristic wavelengths that can be dispersed with a monochromator and detected. In the past, the spark or arc conditions were typically not well controlled, the analysis for the elements in the sample were qualitative. However, modern spark sources with controlled discharges can be considered quantitative. Both qualitative and quantitative spark analysis are widely used for production quality control in foundry and metal casting facilities.

See also

  • Inductively coupled plasma atomic emission spectroscopy
  • Atomic absorption spectroscopy
  • Atomic spectroscopy
  • Laser-induced breakdown spectroscopy

References

1. ^{{cite journal |author=Stáhlavská A |title=[The use of spectrum analytical methods in drug analysis. 1. Determination of alkaline metals using emission flame photometry] |language=German |journal=Pharmazie |volume=28 |issue=4 |pages=238–9 |date=April 1973 |pmid=4716605 |doi= |url=}}
2. ^{{cite journal | vauthors = Stefánsson A, Gunnarsson I, Giroud N | title = New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free Ion Chromatography and inductively coupled plasma atomic emission spectrometry | journal = Anal. Chim. Acta | volume = 582 | issue = 1 | pages = 69–74 | year = 2007 | pmid = 17386476 | doi = 10.1016/j.aca.2006.09.001}}
3. ^{{cite journal|title=Is it still possible, necessary and beneficial to perform research in ICP-atomic emission spectrometry?|journal=J. Anal. At. Spectrom.|year=2005|first=J. M. |last=Mermet|volume=20|issue=|pages=11–16|doi= 10.1039/b416511j}}|url=http://www.rsc.org/publishing/journals/JA/article.asp?doi=b416511j|format=|accessdate=2007-08-31

Bibliography

{{refbegin}}
  • {{cite book |author=Reynolds, R. J. |author2=Thompson, K. C. |title=Atomic absorption, fluorescence, and flame emission spectroscopy: a practical approach |publisher=Wiley |location=New York |year=1978 |pages= |isbn=0-470-26478-0 |oclc= |doi= |accessdate=}}
  • {{cite book |author=Uden, Peter C. |title=Element-specific chromatographic detection by atomic emission spectroscopy |publisher=American Chemical Society |location=Columbus, OH |year=1992 |pages= |isbn=0-8412-2174-X |oclc= |doi= |accessdate=}}
{{refend}}

External links

  • {{cite web |url=http://www.chem.vt.edu/chem-ed/spec/atomic/aes.html |title=Atomic Emission Spectroscopy Tutorial |archiveurl=https://web.archive.org/web/20060501014235/http://www.chem.vt.edu/chem-ed/spec/atomic/aes.html |archivedate=2006-05-01}}
  • {{commonscat-inline}}
{{Analytical chemistry}}{{BranchesofSpectroscopy}}{{authority control}}

3 : Emission spectroscopy|Scientific techniques|Analytical chemistry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/29 15:21:54