请输入您要查询的百科知识:

 

词条 Aircraft fairing
释义

  1. Types

  2. See also

  3. References

An aircraft fairing is a structure whose primary function is to produce a smooth outline and reduce drag.[1]

These structures are covers for gaps and spaces between parts of an aircraft to reduce form drag and interference drag, and to improve appearance.[1][2]

Types

On aircraft, fairings are commonly found on:

Belly fairing

Also called a "ventral fairing", it is located on the underside of the fuselage between the main wings. It can also cover additional cargo storage or fuel tanks.[3]

Cockpit fairing

Also called a "cockpit pod",{{cn|date=June 2016}} it protects the crew on ultralight trikes. Commonly made from fiberglass, it may also incorporate a windshield.[4]

//Elevator (aircraft)">Elevator and horizontal stabilizer tips

Elevator and stabilizer tips fairings smooth out airflow at the tips.{{Citation needed|date=January 2012}}

Engine
//cowling">cowlings

Engine cowlings reduce parasitic drag by reducing the surface area, having a smooth surface and thus leading to laminar flow, and having a nose cone shape, which prevents early flow separation. The inlet and the nozzle in combination lead to an isotropic speed reduction around the cooling fins and due to the speed-squared law to a reduction in cooling drag.{{Citation needed|date=January 2012}}

//Rudder">Fin and rudder tip fairings: Fin and rudder tip fairings reduce drag at low angles of attack, but also reduce the stall angle, so the fairing of control surface tips depends on the application.[5]
Fillets
Fillets smooth the airflow at the junction between two components like the fuselage and wing, or the fuselage and fin.
Fixed
//landing gear">landing gear junctions

Landing gear fairings reduce drag at these junctions.[6]

Flap track fairings

Most jet airliners have a cruising speed between Mach 0.8 and 0.85. For aircraft operating in the transonic regime (about Mach 0.8–1.2), wave drag can be minimized by having a cross-sectional area which changes smoothly along the length of the aircraft. This is known as the area rule. On subsonic aircraft such as jet airliners, this can be achieved by the addition of smooth pods on the trailing edges of the wings. These pods are known as anti-shock bodies, Küchemann Carrots, or flap track fairings, as they enclose the mechanisms for deploying the wing flaps.[7]

//Spinner (aircraft)">Spinner

To cover and streamline the propeller hub.[8][9]

Strut-to-wing and strut-to-fuselage junctions

Strut end fairings reduce drag at these junctions.{{Citation needed|date=January 2012}}

Tail cones

Tail cones reduce the form drag of the fuselage, by recovering the pressure behind it. For the design speed they add no friction drag.{{Citation needed|date=January 2012}}

//Wing root">Wing root

Wing roots are often faired to reduce interference drag between the wing and the fuselage. On top and below the wing it consists of small rounded edge to reduce the surface and such friction drag. At the leading and trailing edge it consists of much larger taper and smooths out the pressure differences: High pressure at the leading and trailing edge, low pressure on top of the wing and around the fuselage.[10]

//Wing tips">Wing tips

Wing tips are often formed as complex shapes to reduce vortex generation and so also drag, especially at low speed.[11]

Wheels on fixed gear aircraft

Wheel fairings are often called "wheel pants", "speed fairings" or, in the United Kingdom, "wheel spats". These fairings are a trade-off in advantages, as they increase the frontal and surface area, but also provide a smooth surface, a faired nose and tail for laminar flow, in an attempt to reduce the turbulence created by the round wheel and its associated gear legs and brakes. They also have the important function of preventing mud and stones from being thrown upwards against the wings or fuselage, or into the propeller on a pusher craft.[2][12][13]

See also

  • Bicycle fairing
  • Motorcycle fairing
  • Payload fairing

References

1. ^Crane, Dale: Dictionary of Aeronautical Terms, Third Edition, page 206. Aviation Supplies & Academics Inc, Newcastle Washington, 1997. {{ISBN|1-56027-287-2}}
2. ^Bingelis, Tony: The Sportplane Builder, pages 261-265. Experimental Aircraft Association Aviation Foundation, 1979. {{ISBN|0-940000-30-X}}
3. ^{{cite book |author=Hitchens, Frank |title=Belly fairing |encyclopedia=The Encyclopedia of Aerodynamics |url=https://books.google.com/books?id=izv0CgAAQBAJ&pg=PT80 |publisher=Andrews UK |year=2015 |isbn=978-1-78-538324-3}}
4. ^Cliche, Andre: Ultralight Aircraft Shopper's Guide 8th Edition, page C-17. Cybair Limited Publishing, 2001. {{ISBN|0-9680628-1-4}}
5. ^Molland, Anthony F. and Turnock, Stephen R.:"Marine Rudders and Control Surfaces: Principles, Data, Design and Applications" 1st Edition, section 5.3.2.11. Butterworth-Heineman, 2007. {{ISBN|978-0-75-066944-3}}
6. ^{{cite journal |last1=Biermann |first1=David |last2=Herrnstein |first2=William |date=June 21, 1934 |title=The Drag of Airplane Wheels, Wheel Fairings and Landing Gear I1 Nonretractable and Partially Retractable Landing Gear |url=http://www.dtic.mil/dtic/tr/fulltext/u2/a278248.pdf |journal=Langley Memorial Aeronautical Laboratory |pages=2-8 |access-date=Oct 9, 2018 }}
7. ^{{cite web|url = http://www.aerospaceweb.org/question/aerodynamics/q0240.shtml|title = Whitcomb Area Rule & Küchemann Carrots|accessdate = 2007-12-27}}
8. ^Bingelis, Tony: Bingelis on Engines, pages 196-210. Experimental Aircraft Association Aviation Foundation, 1995. {{ISBN|0-940000-54-7}}
9. ^Bingelis, Tony: Firewall Forward, pages 269-273. Experimental Aircraft Association Aviation Foundation, 1992. {{ISBN|0-940000-93-8}}
10. ^{{cite journal |last1=Devenport |first1=W.J. |last2=Agarwal |first2=N.K. |date= December 1990|title=Effects of a fillet on the flow past a wing body junction|url=https://arc.aiaa.org/doi/abs/10.2514/3.10517?journalCode=aiaaj |journal=AIAA |volume=28 |issue=12 |pages=94-116 |access-date= October 9, 2018 }}
11. ^{{Cite web|url = http://metcoaire.com/technical/tech_hoerner_design.shtml|title = Why They Work, The Hoerner Design|accessdate = 20 January 2012|last = Met-Co-Aire|date = 2011}}
12. ^Bingelis, Tony: Sportplane Construction Techniques, pages 125-130. Experimental Aircraft Association Aviation Foundation, 1986. {{ISBN|0-940000-92-X}}
13. ^Crane, Dale: Dictionary of Aeronautical Terms, third edition, page 377. Aviation Supplies & Academics, 1997. {{ISBN|1-56027-287-2}}
{{Aircraft components}}

1 : Aircraft components

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 17:29:11