释义 |
- Example
- See also
- References
In mathematics, the Baily–Borel compactification is a compactification of a quotient of a Hermitian symmetric space by an arithmetic group, introduced by {{harvs|txt=yes|first1=Walter L.|last1= Baily|author1-link=Walter Lewis Baily, Jr.|first2= Armand|last2= Borel|year1=1964|year2=1966|author2-link=Armand Borel}}. Example- If C is the quotient of the upper half plane by a congruence subgroup of SL2(Z), then the Baily–Borel compactification of C is formed by adding a finite number of cusps to it.
See alsoReferences- {{citation|first1=Walter L., Jr.|last1= Baily|first2= Armand|last2= Borel|author2-link=Armand Borel|title=On the compactification of arithmetically defined quotients of bounded symmetric domains|journal= Bulletin of the American Mathematical Society |volume= 70 |year=1964|issue=4|pages= 588–593 |url=http://www.ams.org/bull/1964-70-04/S0002-9904-1964-11207-6/|doi=10.1090/S0002-9904-1964-11207-6|mr=0168802}}
- {{citation|first=W.L.|last= Baily|first2= A.|last2= Borel|title=Compactification of arithmetic quotients of bounded symmetric domains|journal= Annals of Mathematics |series= 2 |volume=84 |year=1966|pages= 442–528|doi=10.2307/1970457|jstor=1970457|issue=3|publisher=Annals of Mathematics|mr=0216035}}
- {{springer|id=B/b130010|first=B. Brent|last= Gordon}}
{{DEFAULTSORT:Baily-Borel compactification}}{{geometry-stub}} 2 : Algebraic geometry|Compactification |