请输入您要查询的百科知识:

 

词条 Balanced histogram thresholding
释义

  1. Algorithm

  2. References

  3. External links

In image processing, the balanced histogram thresholding method (BHT),[1] is a very simple method used for automatic image thresholding. Like Otsu's Method[2] and the Iterative Selection Thresholding Method,[3] this is a histogram based thresholding method. This approach assumes that the image is divided in two main classes: The background and the foreground. The BHT method tries to find the optimum threshold level that divides the histogram in two classes.

This method weighs the histogram, checks which of the two sides is heavier, and removes weight from the heavier side until it becomes the lighter. It repeats the same operation until the edges of the weighing scale meet.

Given its simplicity, this method is a good choice as a first approach when presenting the subject of automatic image thresholding.

Algorithm

The following listing, in C notation, is a simplified version of the Balanced Histogram Thresholding method:

int BHThreshold(int[] histogram) {

    i_m = (int)((i_s + i_e) / 2.0f); // center of the weighing scale I_m    w_l = get_weight(i_s, i_m + 1, histogram); // weight on the left W_l    w_r = get_weight(i_m + 1, i_e + 1, histogram); // weight on the right W_r    while (i_s <= i_e) {        if (w_r > w_l) { // right side is heavier            w_r -= histogram[i_e--];            if (((i_s + i_e) / 2) < i_m) {                w_r += histogram[i_m];                w_l -= histogram[i_m--];            }        } else if (w_l >= w_r) { // left side is heavier            w_l -= histogram[i_s++];             if (((i_s + i_e) / 2) >= i_m) {                w_l += histogram[i_m + 1];                w_r -= histogram[i_m + 1];                i_m++;            }        }    }    return i_m;

}

This method may have problems when dealing with very noisy images, because the weighing scale may be misplaced. The problem can be minimized by ignoring the extremities of the histogram.[4]

References

1. ^A. Anjos and H. Shahbazkia. Bi-Level Image Thresholding - A Fast Method. BIOSIGNALS 2008. Vol:2. P:70-76.
2. ^Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9: 62–66.
3. ^Ridler TW, Calvard S. (1978) Picture thresholding using an iterative selection method, IEEE Trans. System, Man and Cybernetics, SMC-8: 630-632.
4. ^A. Anjos, R. Leite, M. L. Cancela, H. Shahbazkia. MAQ – A Bioinformatics Tool for Automatic Macroarray Analysis. International Journal of Computer Applications. 2010. Number 7 - Article 1.

External links

  • ImageJ Plugin
  • [https://www.youtube.com/watch?v=rKWK4O4dZQ8 Otsu vs. BHT]
{{DEFAULTSORT:Balanced Histogram Thresholding}}

1 : Image segmentation

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 11:08:27