请输入您要查询的百科知识:

 

词条 Bateman function
释义

  1. Properties

  2. References

In mathematics, the Bateman function (or k-function) is a special case of the confluent hypergeometric function studied by Harry Bateman(1931)[1][2]. Bateman defined it by

Bateman discovered this function, when Theodore von Kármán asked for the solution of the following differential equation which appeared in the theory of turbulence[3]

and Bateman found this function as one of the solutions. Bateman denoted this function as "k" function in honor of Theodore von Kármán.

This is not to be confused with another function of the same name which is used in Pharmacokinetics.

Properties

  • for real values of and
  • for if is a positive integer
  • If is an odd integer, then , where is the Modified Bessel function of the second kind.

References

1. ^{{Citation | last1=Bateman | first1=H. | authorlink=Harry Bateman | title=The k-function, a particular case of the confluent hypergeometric function | doi=10.2307/1989510 | mr=1501618 | year=1931 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=33 | issue=4 | pages=817–831}}
2. ^{{Springer|id=B/b015360|title=Bateman function}}
3. ^Martin, P. A., & Bateman, H. (2010). from Manchester to Manuscript Project. Mathematics Today, 46, 82-85. http://www.math.ust.hk/~machiang/papers_folder/http___www.ima.org.uk_mathematics_mt_april10_harry_bateman_from_manchester_to_manuscript_project.pdf

2 : Special hypergeometric functions|Special functions

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 13:25:14