释义 |
- Function
- Animal models
- Interactions
- References
- Further reading
- External links
{{Infobox_gene}}Tyrosine-protein kinase BAZ1B is an enzyme that in humans is encoded by the BAZ1B gene.[1][2][3]FunctionThis gene encodes a member of the bromodomain protein family. The bromodomain is a structural motif characteristic of proteins involved in chromatin-dependent regulation of transcription. This gene is deleted in Williams-Beuren syndrome, a developmental disorder caused by deletion of multiple genes at 7q11.23.[3] Animal modelsModel organisms have been used in the study of BAZ1B function. A conditional knockout mouse line, called Baz1btm2a(KOMP)Wtsi,[4] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[5][6][7]Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][8][9][10] Baz1b knockout mouse phenotype Characteristic | Abnormal |
---|
Homozygote viability | Yes[11] | Body weight | Yes[12] | Hair follicle cycling | No | Anxiety | No | Modified SHIRPA | No | Grip strength | No | Dysmorphology | No | Indirect calorimetry | Yes[13] | Glucose tolerance test | No | Auditory brainstem response | No | DEXA | Yes[14] | Radiography | Yes[15] | Body temperature | No | Eye morphology | No | Heart weight | No | Heart histology | No | Histology | No | Clinical chemistry | No | Plasma immunoglobulins | No | Haematology | No | Peripheral blood lymphocytes | No | Micronucleus test | No | Salmonella infection | Yes[16] | Citrobacter infection | No | All tests and analysis from [8][9][10] | Six significant phenotypes were reported:[10] - Fewer homozygous mutant mice survived to weaning than expected.
- Mutant mice had decreased body weights compared to wildtype control mice.
- Mutant mice showed increased activity, VO2 and energy expenditure, determined by indirect calorimetry.
- Radiography found teeth abnormalities.
- Dual-energy X-ray absorptiometry (DEXA) showed mutant female mice had a decrease in bone mineral density and content.
- Male heterozygous mice had higher bacterial counts after Salmonella infection.
InteractionsBAZ1B has been shown to interact with: - CHAF1A,[17]
- SMARCB1,[17]
- SMARCC1,[17]
- SMARCC2,[17]
- SUPT16H[17]
- TOP2B,[17] and
- VDR.[17]
{{Clear}}References1. ^{{cite journal | vauthors = Peoples RJ, Cisco MJ, Kaplan P, Francke U | title = Identification of the WBSCR9 gene, encoding a novel transcriptional regulator, in the Williams-Beuren syndrome deletion at 7q11.23 | journal = Cytogenet Cell Genet | volume = 82 | issue = 3–4 | pages = 238–46 |date=Feb 1999 | pmid = 9858827 | pmc = | doi =10.1159/000015110 }} 2. ^{{cite journal | vauthors = Lu X, Meng X, Morris CA, Keating MT | title = A novel human gene, WSTF, is deleted in Williams syndrome | journal = Genomics | volume = 54 | issue = 2 | pages = 241–9 |date=Jan 1999 | pmid = 9828126 | pmc = | doi = 10.1006/geno.1998.5578 }} 3. ^1 {{cite web | title = Entrez Gene: BAZ1B bromodomain adjacent to zinc finger domain, 1B| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9031| accessdate = }} 4. ^{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Baz1b |title=Baz1btm2a(KOMP)Wtsi |author=KOMP |work= |publisher=knockoutmouse.org}} 5. ^{{cite journal |author=Dolgin E |title=Mouse library set to be knockout |journal=Nature|volume=474 |issue= 7351|pages=262–263 |date=June 2011 |pmid=21677718|doi=10.1038/474262a |url=http://www.nature.com/news/2011/110615/full/474262a.html}} 6. ^{{cite journal |vauthors=Collins FS, Rossant J, Wurst W |title=A mouse for all reasons |journal=Cell |volume=128 |issue=1 |pages=9–13 |date=January 2007 |pmid=17218247 |doi=10.1016/j.cell.2006.12.018 |url=}} 7. ^1 {{cite journal |vauthors=Van der Weyden L, White JK, Adams DA, Logan DW |title=The mouse genetics toolkit: revealing function and mechanism |journal=Genome Biology|volume=12 |issue=6 |page=224 |date=June 2011 |pmid=21722353|doi=10.1186/gb-2011-12-6-224 |url=http://genomebiology.com/2011/12/6/224 |pmc=3218837}} 8. ^1 {{cite journal| vauthors=Karp NA, Baker LA, Gerdin AK, Adams NC, Ramírez-Solis R, White JK| title=Optimising experimental design for high-throughput phenotyping in mice: a case study | journal=Mamm Genome | year= 2010 | volume= 21 | issue= 9–10 | pages= 467–76 | pmid=20799038 | doi=10.1007/s00335-010-9279-1 | pmc=2974211 | url= }} 9. ^1 {{cite journal |author=Gerdin AK|title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |journal=Acta Ophthalmologica |volume=88 |issue= |pages=925–7 |year=2010 |pmid= |pmc= |doi=10.1111/j.1755-3768.2010.4142.x}} 10. ^1 2 {{cite web |url=http://www.sanger.ac.uk/mouseportal/search?query=Baz1b |title=MGP Phenotyping of Baz1btm2a(KOMP)Wtsi|author=Wellcome Trust Sanger Institute|author-link=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 11. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/viability-at-weaning/ |title=Viability at Weaning Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 12. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/weight-curves/ |title=Weight Curves Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 13. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/indirect-calorimetry/ |title=Indirect Calorimetry Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 14. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/body-composition-dexa/ |title=Body Composition (DEXA) Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 15. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/x-ray-imaging/ |title=X-ray Imaging Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 16. ^{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MACW/salmonella-challenge/ |title=Salmonella Challenge Data for Baz1b |author=Wellcome Trust Sanger Institute |work=Mouse Resources Portal |publisher=sanger.ac.uk}} 17. ^1 2 3 4 5 6 {{cite journal | date = Jun 2003 | vauthors = Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S | title = The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome | journal = Cell | volume = 113 | issue = 7 | pages = 905–17 | pmid = 12837248 | doi = 10.1016/S0092-8674(03)00436-7}}
Further reading{{refbegin | 2}}- {{cite journal |title=Toward a complete human genome sequence |journal=Genome Res. |volume=8 |issue= 11 |pages= 1097–108 |year= 1999 |pmid= 9847074 |doi= 10.1101/gr.8.11.1097}}
- {{cite journal | vauthors=Jones MH, Hamana N, Nezu J, Shimane M |title=A novel family of bromodomain genes |journal=Genomics |volume=63 |issue= 1 |pages= 40–5 |year= 2000 |pmid= 10662543 |doi= 10.1006/geno.1999.6071 }}
- {{cite journal | vauthors=Pascual J, Martinez-Yamout M, Dyson HJ, Wright PE|authorlink3=Jane Dyson |title=Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor |journal=J. Mol. Biol. |volume=304 |issue= 5 |pages= 723–9 |year= 2001 |pmid= 11124022 |doi= 10.1006/jmbi.2000.4308 }}
- {{cite journal | vauthors=Bozhenok L, Wade PA, Varga-Weisz P |title=WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci |journal=EMBO J. |volume=21 |issue= 9 |pages= 2231–41 |year= 2002 |pmid= 11980720 |doi= 10.1093/emboj/21.9.2231 | pmc=125993 }}
- {{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
- {{cite journal | vauthors=Kitagawa H, Fujiki R, Yoshimura K |title=The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome |journal=Cell |volume=113 |issue= 7 |pages= 905–17 |year= 2003 |pmid= 12837248 |doi=10.1016/S0092-8674(03)00436-7 |display-authors=etal}}
- {{cite journal | vauthors=Hillier LW, Fulton RS, Fulton LA |title=The DNA sequence of human chromosome 7 |journal=Nature |volume=424 |issue= 6945 |pages= 157–64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 |display-authors=etal}}
- {{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
- {{cite journal | vauthors=Beausoleil SA, Jedrychowski M, Schwartz D |title=Large-scale characterization of HeLa cell nuclear phosphoproteins |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 |display-authors=etal}}
- {{cite journal | vauthors=Poot RA, Bozhenok L, van den Berg DL |title=The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci |journal=Nat. Cell Biol. |volume=6 |issue= 12 |pages= 1236–44 |year= 2005 |pmid= 15543136 |doi= 10.1038/ncb1196 |display-authors=etal}}
- {{cite journal | vauthors=Andersen JS, Lam YW, Leung AK |title=Nucleolar proteome dynamics |journal=Nature |volume=433 |issue= 7021 |pages= 77–83 |year= 2005 |pmid= 15635413 |doi= 10.1038/nature03207 |display-authors=etal}}
- {{cite journal | vauthors=Fujiki R, Kim MS, Sasaki Y |title=Ligand-induced transrepression by VDR through association of WSTF with acetylated histones |journal=EMBO J. |volume=24 |issue= 22 |pages= 3881–94 |year= 2005 |pmid= 16252006 |doi= 10.1038/sj.emboj.7600853 | pmc=1283952 |display-authors=etal}}
- {{cite journal | vauthors=Percipalle P, Fomproix N, Cavellán E |title=The chromatin remodelling complex WSTF–SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription |journal=EMBO Rep. |volume=7 |issue= 5 |pages= 525–30 |year= 2006|pmid= 16514417 |doi= 10.1038/sj.embor.7400657 | pmc=1479564 |display-authors=etal}}
- {{cite journal | vauthors=Nousiainen M, Silljé HH, Sauer G |title=Phosphoproteome analysis of the human mitotic spindle |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391–6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 | pmc=1459365 |display-authors=etal}}
- {{cite journal | vauthors=Cavellán E, Asp P, Percipalle P, Farrants AK |title=The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription |journal=J. Biol. Chem. |volume=281 |issue= 24 |pages= 16264–71 |year= 2006 |pmid= 16603771 |doi= 10.1074/jbc.M600233200 }}
- {{cite journal | vauthors=Olsen JV, Blagoev B, Gnad F |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |display-authors=etal}}
{{refend}}External links- {{MeshName|BAZ1B+protein,+human}}
- {{UCSC gene info|BAZ1B}}
{{NLM content}}{{PDB Gallery|geneid=9031}}{{Transcription factors}} 1 : Transcription factors |