词条 | BD+14 4559 b |
释义 |
| name = BD+14 4559 b | symbol = | image = BD+14 4559 b.jpg | image_size = | image_alt = | caption = Artist's impression of BD+14 4559 b (foreground), depicted here as a gas giant planet with rings, orbiting its host star (center) | background = | bgcolour = | label_width = | discoverer = Niedzielski et al. | discovery_site = La Silla Observatory | discovered = June 10, 2009 | discovery_method = radial velocity | discovery_ref = | exosolar planets = | minorplanet = | extrasolarplanet = | mpc_name = | pronounced = | named_after = | alt_names = | mp_category = | adjectives = | orbit_ref = | orbit_diagram = | epoch = | uncertainty = | observation_arc = | earliest_precovery_date = | apsis = astron | aphelion = {{convert|1.002|AU|km|abbr=on}} | perihelion = {{convert|0.552|AU|km|abbr=on}} | semimajor = {{convert|0.777|AU|km|abbr=on}} | mean_orbit_radius = | eccentricity = 0.29 ± 0.03 | period = 268.94 ± 0.99 d | synodic_period = | avg_speed = | mean_anomaly = | mean_motion = | inclination = | angular_dist = | asc_node = | long_periastron = | time_periastron = 53293.71 ± 6.35 | arg_peri = 87.64 ± 7.87 | semi-amplitude = | satellite_of = | satellites = | star = | allsatellites = | tisserand = | physical_ref = | dimensions = | mean_diameter = | mean_radius = ~1.05 {{Jupiter radius|link=y}} | equatorial_radius = | polar_radius = | flattening = | circumference = | surface_area = | volume = | mass = | density = | surface_grav = | moment_of_inertia_factor = | escape_velocity = | rotation = | sidereal_day = | rot_velocity = | axial_tilt = | right_asc_north_pole = | declination = | pole_ecliptic_lat = | pole_ecliptic_lon = | albedo = | single_temperature = {{convert|205|K|C F}} | spectral_type = | magnitude = | abs_magnitude = | angular_size = | family = | atmosphere_ref = | atmosphere = | scale_height = | surface_pressure = | atmosphere_composition = | note = }}BD+14 4559 b is an exoplanet orbiting the K-type main sequence star BD+14 4559 about 161 light-years (49 parsecs, or nearly {{val|1.5|e=15}} km) from Earth in the constellation Pegasus. It orbits its star within the habitable zone at a distance of 0.777 AU, close to that of Venus, but its star is less energetic, thus its habitable zone is closer to it than Earth. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. CharacteristicsMass, radius and temperatureBD+14 4559 b is a gas giant, an exoplanet that has a radius and mass around that of the gas giants Jupiter and Saturn. It has a temperature of {{convert|205|K|C F}}.[1] It has an estimated mass of around 1.2 {{Jupiter mass}} and a potential radius of around 1.05 {{Jupiter radius}} based on its mass. Host starThe planet orbits a (K-type) star named BD+14 4559. The star has a mass of 0.86 {{Solar mass}} and a radius of around 0.95 {{Solar radius}}. It has a surface temperature of 5008 K and is likely about 3 billion years old based on its evolution and mass. In comparison, the Sun is about 4.6 billion years old[2] and has a surface temperature of 5778 K.[3] The star's apparent magnitude, or how bright it appears from Earth's perspective, is 9.63. Therefore, BD+14 4559 is too dim to be seen with the naked eye, but can be viewed using good binoculars. OrbitBD+14 4559 b orbits its star with about 25% of the Sun's luminosity every 268 days at a distance of 0.77 AU (close to Venus's orbital distance from the Sun, which is 0.72 AU). It has a mildly eccentric orbit, with an eccentricity of 0.29. Habitability{{see also|Habitability of natural satellites}}BD+14 4559 b resides in the habitable zone of the parent star. The exoplanet, with a mass of 1.47 {{Jupiter mass}}, is too massive to likely be rocky, and because of this the planet itself may not be habitable. Hypothetically, large enough moons, with a sufficient atmosphere and pressure, may be able to support liquid water and potentially life. However, such moons do not usually form around planets, they would likely have to be captured from afar; e.g., a protoplanet running astray. For a stable orbit the ratio between the moon's orbital period Ps around its primary and that of the primary around its star Pp must be < 1/9, e.g. if a planet takes 90 days to orbit its star, the maximum stable orbit for a moon of that planet is less than 10 days.[4][5] Simulations suggest that a moon with an orbital period less than about 45 to 60 days will remain safely bound to a massive giant planet or brown dwarf that orbits 1 AU from a Sun-like star.[6] In the case of BD+14 4559 b, the orbital period would have to be no greater than a month (28–29 days) in order to have a stable orbit. Tidal effects could also allow the moon to sustain plate tectonics, which would cause volcanic activity to regulate the moon's temperature[7][8] and create a geodynamo effect which would give the satellite a strong magnetic field.[9] To support an Earth-like atmosphere for about 4.6 billion years (the age of the Earth), the moon would have to have a Mars-like density and at least a mass of 0.07 {{Earth mass}}.[10] One way to decrease loss from sputtering is for the moon to have a strong magnetic field that can deflect stellar wind and radiation belts. NASA's Galileo's measurements hints large moons can have magnetic fields; it found that Jupiter's moon Ganymede has its own magnetosphere, even though its mass is only 0.025 {{Earth mass}}.[6] DiscoveryThe search for BD+14 4559 b started when its host star was chosen an ideal target for a planet search using the radial velocity method (in which the gravitational pull of a planet on its star is measured by observing the resulting Doppler shift), as stellar activity would not overly mask or mimic Doppler spectroscopy measurements. It was also confirmed that BD+14 4559 is neither a binary star nor a quickly rotating star, common false positives when searching for transiting planets. Analysis of the resulting data found that the radial velocity variations most likely indicated the existence of a planet. The net result was an estimate of a 1.47 {{Jupiter mass}} planetary companion orbiting the star at a distance of 0.77 AU with an eccentricity of 0.29. Radial velocity measurements of BD+14 4559 were measured at 43 epochs over the period of roughly 1,265 days (around 4 years) using the Hobby–Eberly Telescope. Measurements determined that a signal-to-noise ratio per resolution element was around 150–260 at 594 nm in 10 to 25 minutes of integration. The estimated mean RV uncertainty for the parent star was estimated at 8 m s−1. The discovery of BD+14 4559 b was reported in the journal The Astrophysical Journal on June 10, 2009. See also
References1. ^http://www.hpcf.upr.edu/~abel/phl/hec_plots/hec_orbit/hec_orbit_BD14_4559_b.png 2. ^{{cite web |url=http://www.universetoday.com/18237/how-old-is-the-sun/ |title=How Old is the Sun? |author=Fraser Cain |date=16 September 2008 |website= |publisher=Universe Today |accessdate=19 February 2011}} 3. ^{{cite web |url=http://www.universetoday.com/18092/temperature-of-the-sun/ |title=Temperature of the Sun |author=Fraser Cain |date=September 15, 2008 |website= |publisher=Universe Today |accessdate=19 February 2011}} 4. ^{{cite journal| last=Kipping| first=David| title=Transit timing effects due to an exomoon| journal=Monthly Notices of the Royal Astronomical Society| year=2009| volume=392| issue=1| pages=181–189| doi=10.1111/j.1365-2966.2008.13999.x| accessdate=| bibcode = 2009MNRAS.392..181K |arxiv = 0810.2243}} 5. ^{{cite journal| last1=Heller| first1=R.| title=Exomoon habitability constrained by energy flux and orbital stability| journal=Astronomy & Astrophysics| volume=545| year=2012| pages=L8| issn=0004-6361| doi=10.1051/0004-6361/201220003| arxiv = 1209.0050 |bibcode = 2012A&A...545L...8H }} 6. ^1 {{cite web| url=http://www.skyandtelescope.com/resources/seti/3304591.html?showAll=y&c=y| publisher= SkyandTelescope.com| title=Habitable Moons:What does it take for a moon — or any world — to support life?| author=Andrew J. LePage| accessdate=2011-07-11}} 7. ^{{cite web| last=Glatzmaier| first=Gary A.| title=How Volcanoes Work – Volcano Climate Effects| url=http://www.geology.sdsu.edu/how_volcanoes_work/climate_effects.html |accessdate=29 February 2012}} 8. ^{{cite web| title=Solar System Exploration: Io| url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Io| work=Solar System Exploration| publisher=NASA| accessdate=29 February 2012}} 9. ^{{cite web| last=Nave| first=R.| title=Magnetic Field of the Earth| url=http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magearth.html| accessdate=29 February 2012}} 10. ^{{cite web| url=http://www.xs4all.nl/~carlkop/habit.html|title=In Search Of Habitable Moons| publisher=Pennsylvania State University| accessdate=2011-07-11}} }}{{Sky|21|13|35.99|+|14|41|21.8}}{{DEFAULTSORT:BD 14 4559 b}} 6 : Exoplanets|Exoplanets discovered in 2009|Giant planets|Pegasus (constellation)|Exoplanets detected by radial velocity|Giant planets in the habitable zone |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。