请输入您要查询的百科知识:

 

词条 Bhatia–Davis inequality
释义

  1. See also

  2. References

{{primary sources|date=February 2016}}

In mathematics, the Bhatia–Davis inequality, named after Rajendra Bhatia and Chandler Davis, is an upper bound on the variance σ2 of any bounded probability distribution on the real line.

Suppose a distribution has minimum m, maximum M, and expected value μ. Then the inequality says:

Equality holds precisely if all of the probability is concentrated at the endpoints m and M.

The Bhatia–Davis inequality is stronger than Popoviciu's inequality on variances.

See also

  • Cramér–Rao bound
  • Chapman–Robbins bound

References

1. ^Agarwal R P, Barnett N S, Cerone P and Dragomir S S (2005) "A survey on some inequalities for expectation and variance." Computers and mathematics with applications 49 (2005) 429–480
  • {{cite journal

| doi = 10.2307/2589180
| last = Bhatia
| first = Rajendra
|author2=Davis, Chandler |authorlink2=Chandler Davis
|date=April 2000
| title = A Better Bound on the Variance
| journal = American Mathematical Monthly
| volume = 107
| issue = 4
| pages = 353–357
| publisher = Mathematical Association of America
| issn = 0002-9890
| jstor = 2589180
}}{{DEFAULTSORT:Bhatia-Davis Inequality}}{{probability-stub}}

2 : Statistical inequalities|Theory of probability distributions

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/15 5:24:19