词条 | Bochner–Martinelli formula |
释义 |
In mathematics, the Bochner–Martinelli formula is a generalization of the Cauchy integral formula to functions of several complex variables, introduced by {{harvs|txt|first=Enzo|last=Martinelli| authorlink=Enzo Martinelli|year=1938}} and {{harvs|txt|first=Salomon|last=Bochner|authorlink=Salomon Bochner|year=1943}}. History{{quote|text= Formula (53) of the present paper and a proof of theorem 5 based on it have just been published by Enzo Martinelli (...).[1] The present author may be permitted to state that these results have been presented by him in a Princeton graduate course in Winter 1940/1941 and were subsequently incorporated, in a Princeton doctorate thesis (June 1941) by Donald C. May, entitled: An integral formula for analytic functions of {{math|k}} variables with some applications. |sign=Salomon Bochner |source={{harv|Bochner|1943|loc=p. 652, footnote 1}}. }}{{quote |text= However this author's claim in loc. cit. footnote 1,[2] that he might have been familiar with the general shape of the formula before Martinelli, was wholly unjustified and is hereby being retracted. |sign=Salomon Bochner |source={{harv|Bochner|1947|loc=p. 15, footnote *}}. }} Bochner–Martinelli kernelFor {{math|ζ}}, {{math|z}} in ℂn the Bochner–Martinelli kernel {{math|ω(ζ,z)}} is a differential form in {{math|ζ}} of bidegree {{math|(n,n−1)}} defined by (where the term {{math|d{{overline|ζ}}j}} is omitted). Suppose that {{math|f}} is a continuously differentiable function on the closure of a domain {{math|D}} in ℂn with piecewise smooth boundary {{math|∂D}}. Then the Bochner–Martinelli formula states that if {{math|z}} is in the domain {{math|D}} then In particular if {{math|f}} is holomorphic the second term vanishes, so See also
Notes1. ^Bochner refers explicitly to the article {{harv|Martinelli|1942-1943}}, apparently being not aware of the earlier one {{harv|Martinelli|1938}}, which actually contains Martinelli's proof of the formula. However, the earlier article is explicitly cited in the later one, as it can be seen from {{harv|Martinelli|1942-1943|loc=p. 340, footnote 2}}. 2. ^Bochner refers to his claim in {{harv|Bochner|1943|loc=p. 652, footnote 1}}. References{{refbegin}}
|last = Aizenberg |first = L. A. |author-link = Lev Aizenberg |last2 = Yuzhakov |first2 = A. P. |author2-link = Aleksandr Yuzhakov |title = Integral Representations and Residues in Multidimensional Complex Analysis |url = https://books.google.com/books?id=2ZWsf6ufee8C&printsec=frontcover&hl=env=onepage&q&f=true |place = Providence R.I. |series = Translations of Mathematical Monographs |volume = 58 |publisher = American Mathematical Society |pages = x+283 |year = 1983 |origyear = 1979 |isbn = 0-8218-4511-X |mr = 0735793 |zbl = 0537.32002 }}.
|last1=Bochner |first1=Salomon |author1-link=Salomon Bochner |title=Analytic and meromorphic continuation by means of Green's formula |jstor=1969103 |mr=0009206 |zbl = 0060.24206 |series=Second Series |year=1943 |journal=Annals of Mathematics |issn=0003-486X |doi=10.2307/1969103 |volume=44 |pages=652–673 |subscription=yes}}.
|last1 = Bochner |first1 = Salomon |author1-link = Salomon Bochner |title = On compact complex manifolds |journal = The Journal of the Indian Mathematical Society |series = New Series, |volume = 11 |pages = 1–21 |year = 1947 |url = |doi = |mr = 0023919 |zbl = 0038.23701 }}.
|last=Krantz |first=Steven G. |author-link= Steven G. Krantz |title=Function theory of several complex variables |url=https://books.google.com/books?isbn=9780821827246 |publisher=AMS Chelsea Publishing |year=2001 |origyear=1992 |edition=reprint of 2nd |pages = xvi+564 |place= Providence, R.I. |isbn=978-0-8218-2724-6 |mr=1846625 |zbl=1087.32001 |doi=10.1090/chel/340 }}.
|last = Kytmanov |first = Alexander M. |author-link = Alexander Kytmanov |title=The Bochner-Martinelli integral and its applications |origyear = 1992 |url=https://books.google.com/books?isbn=376435240X |publisher = Birkhäuser Verlag |pages = xii+305 |year = 1995 |isbn = 978-3-7643-5240-0 |mr = 1409816 |zbl = 0834.32001 |doi=10.1007/978-3-0348-9094-6 }}.
|last = Kytmanov |first = Alexander M. |author-link = Alexander Kytmanov |last2 = Myslivets |first2 = Simona G. |author2-link = |title = Интегральные представления и их приложения в многомерном комплексном анализе |trans-title = Integral representations and their application in multidimensional complex analysis |url = http://www.eastview.com/russian/books/product.asp?SKU=930345B&f_locale=_CYR&active_tab=1 |place = Красноярск |publisher = СФУ |pages = 389 |year = 2010 |isbn = 978-5-7638-1990-8 |mr = |zbl = |deadurl = yes |archiveurl = https://web.archive.org/web/20140323020317/http://www.eastview.com/russian/books/product.asp?SKU=930345B&f_locale=_CYR&active_tab=1 |archivedate = 2014-03-23 |df = }}.
|last = Kytmanov |first = Alexander M. |author-link = Alexander Kytmanov |last2 = Myslivets |first2 = Simona G. |author2-link = |title = Multidimensional integral representations. Problems of analytic continuation |url = https://books.google.com/books?id=jpWKCgAAQBAJ&printsec=frontcover&hl=it#v=onepage&q&f=true |place = Cham–Heidelberg–New York–Dordrecht–London |publisher = Springer Verlag |pages = xiii+225 |year = 2015 |isbn = 978-3-319-21658-4 |doi=10.1007/978-3-319-21659-1 |mr = 3381727 |zbl = 1341.32001 }}, {{ISBN|978-3-319-21659-1}} (ebook).
|last=Martinelli |first=Enzo |author-link= |title=Alcuni teoremi integrali per le funzioni analitiche di più variabili complesse |trans-title=Some integral theorems for analytic functions of several complex variables |language = Italian |year=1938 |journal=Atti della Reale Accademia d'Italia. Memorie della Classe di Scienze Fisiche, Matematiche e Naturali |issue=7 |volume=9 |pages=269–283 |id= |jfm= 64.0322.04 |zbl = 0022.24002 }}. The first paper where the now called Bochner-Martinelli formula is introduced and proved.
|last = Martinelli |first = Enzo |author-link = |title = Sopra una dimostrazione di R. Fueter per un teorema di Hartogs |trans-title = On a proof of R. Fueter of a theorem of Hartogs |language = Italian |journal = Commentarii Mathematici Helvetici |volume = 15 |issue = 1 |pages = 340–349 |year = 1942–1943 |url = http://retro.seals.ch/digbib/en/view?rid=comahe-002:1942-1943:15::26 |doi = 10.5169/seals-14896 |mr = 0010729 |zbl = 0028.15201 |deadurl = yes |archiveurl = https://web.archive.org/web/20111002072948/http://retro.seals.ch/digbib/en/view?rid=comahe-002%3A1942-1943%3A15%3A%3A26 |archivedate = 2011-10-02 |df = }}. Available at the SEALS Portal. In this paper Martinelli gives a proof of Hartogs' extension theorem by using the Bochner-Martinelli formula.
|last = Martinelli |first = Enzo |author-link = |title = Introduzione elementare alla teoria delle funzioni di variabili complesse con particolare riguardo alle rappresentazioni integrali |trans-title=Elementary introduction to the theory of functions of complex variables with particular regard to integral representations |language = Italian |place = Rome |publisher = Accademia Nazionale dei Lincei |year = 1984 |series = Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche e Loro Applicazioni |volume = 67 |pages = 236+II |url = http://www.lincei.it/pubblicazioni/catalogo/volume.php?lg=e&rid=33233 |doi = |id = |isbn = }}. The notes form a course, published by the Accademia Nazionale dei Lincei, held by Martinelli during his stay at the Accademia as "Professore Linceo".
|last = Martinelli |first = Enzo |title = Qualche riflessione sulla rappresentazione integrale di massima dimensione per le funzioni di più variabili complesse |trans-title=Some reflections on the integral representation of maximal dimension for functions of several complex variables |language = Italian |journal = Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali |series = Series VIII |url=http://www.bdim.eu/item?fmt=pdf&id=RLIN_1984_8_76_4_235_0 |volume = 76 |issue = 4 |pages = 235–242 |year = 1984b |mr=0863486 |zbl = 0599.32002 }}. In this article, Martinelli gives another form to the Martinelli–Bochner formula. {{refend}}{{DEFAULTSORT:Bochner-Martinelli formula}} 2 : Theorems in complex analysis|Several complex variables |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。