请输入您要查询的百科知识:

 

词条 Bs space
释义

  1. References

In the mathematical field of functional analysis, the space bs consists of all infinite sequences (xi) of real or complex numbers such that

is finite. The set of such sequences forms a normed space with the vector space operations defined componentwise, and the norm given by

Furthermore, with respect to metric induced by this norm, bs is complete: it is a Banach space.

The space of all sequences (xi) such that the series

is convergent (possibly conditionally) is denoted by cs. This is a closed vector subspace of bs, and so is also a Banach space with the same norm.

The space bs is isometrically isomorphic to the space of bounded sequences ℓ via the mapping

Furthermore, the space of convergent sequences c is the image of cs under T.

References

  • {{citation|first1=N.|last1=Dunford|first2=J.T.|last2=Schwartz|title=Linear operators, Part I|publisher=Wiley-Interscience|year=1958}}.
{{mathanalysis-stub}}

2 : Banach spaces|Functional analysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/18 20:38:51