请输入您要查询的百科知识:

 

词条 Hilbert–Speiser theorem
释义

  1. References

In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of {{math|Q}}, which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields.

Hilbert–Speiser Theorem. A finite abelian extension {{math|K/Q}} has a normal integral basis if and only if it is tamely ramified over {{math|Q}}.

This is the condition that it should be a subfield of {{math|Q(ζn)}} where {{mvar|n}} is a squarefree odd number. This result was introduced by {{harvs|txt|authorlink=David Hilbert|last=Hilbert|year1=1897|loc1=Satz 132|year2=1998|loc2=theorem 132}} in his Zahlbericht and by {{harvs|txt|authorlink=Andreas Speiser|last=Speiser|year=1916|loc=corollary to proposition 8.1}}.

In cases where the theorem states that a normal integral basis does exist, such a basis may be constructed by means of Gaussian periods. For example if we take {{mvar|n}} a prime number {{math|p > 2}}, {{math|Q(ζp)}} has a normal integral basis consisting of all the {{math|p}}-th roots of unity other than {{math|1}}. For a field {{mvar|K}} contained in it, the field trace can be used to construct such a basis in {{mvar|K}} also (see the article on Gaussian periods). Then in the case of {{mvar|n}} squarefree and odd, {{math|Q(ζn)}} is a compositum of subfields of this type for the primes {{mvar|p}} dividing {{mvar|n}} (this follows from a simple argument on ramification). This decomposition can be used to treat any of its subfields.

{{harvs|txt | last1=Greither | first1=Cornelius | last2=Replogle | first2=Daniel R. | last3=Rubin | first3=Karl | last4=Srivastav | first4=Anupam |year=1999}} proved a converse to the Hilbert–Speiser theorem:

Each finite tamely ramified abelian extension {{mvar|K}} of a fixed number field {{mvar|J}} has a relative normal integral basis if and only if {{math|J {{=}}Q}}.

References

*{{Citation | last1=Greither | first1=Cornelius | last2=Replogle | first2=Daniel R. | last3=Rubin | first3=Karl | last4=Srivastav | first4=Anupam | title=Swan modules and Hilbert–Speiser number fields | journal=Journal of Number Theory | volume=79 | pages=164–173 | doi=10.1006/jnth.1999.2425 | year=1999}}

  • {{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=Die Theorie der algebraischen Zahlkörper | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002115344 | language=German | year=1897 | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | issn=0012-0456 | volume=4 | pages=175–546 }}
  • {{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=The theory of algebraic number fields | url=https://books.google.com/books?id=_Q2h83Bm94cC | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-62779-1 |mr=1646901 | year=1998}}
  • {{Citation | last1=Speiser | first1=A. | title=Gruppendeterminante und Körperdiskriminante | year=1916 | journal=Mathematische Annalen | issn=0025-5831 | volume=77 | issue=4 | pages=546–562 | doi=10.1007/BF01456968}}
{{DEFAULTSORT:Hilbert-Speiser theorem}}

2 : Cyclotomic fields|Theorems in algebraic number theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/28 15:19:43