请输入您要查询的百科知识:

 

词条 Cheng's eigenvalue comparison theorem
释义

  1. Theorem

  2. See also

  3. References

      Citations    Bibliography  

In Riemannian geometry, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "size" of the domain must also account for its curvature.[1] The theorem is due to {{harvtxt|Cheng|1975b}} by Shiu-Yuen Cheng. Using geodesic balls, it can be generalized to certain tubular domains {{harv|Lee|1990}}.

Theorem

Let M be a Riemannian manifold with dimension n, and let BM(pr) be a geodesic ball centered at p with radius r less than the injectivity radius of p ∈ M. For each real number k, let N(k) denote the simply connected space form of dimension n and constant sectional curvature k. Cheng's eigenvalue comparison theorem compares the first eigenvalue λ1(BM(pr)) of the Dirichlet problem in BM(pr) with the first eigenvalue in BN(k)(r) for suitable values of k. There are two parts to the theorem:

  • Suppose that KM, the sectional curvature of M, satisfies

Then

The second part is a comparison theorem for the Ricci curvature of M:

  • Suppose that the Ricci curvature of M satisfies, for every vector field X,

Then, with the same notation as above,

S.Y. Cheng used Barta's theorem to derive the eigenvalue comparison theorem. As a special case, if k = −1 and inj(p) = ∞, Cheng’s inequality becomes λ*(N) ≥ λ*(H n(−1)) which is McKean’s inequality.[2]

See also

  • Comparison theorem
  • Eigenvalue comparison theorem

References

Citations

1. ^{{harvnb|Chavel|1984|p=77}}
2. ^{{harvnb|Chavel|1984|p=70}}

Bibliography

  • {{citation |title = On Cheng's eigenvalue comparison theorem |first1=G.P. |last1=Bessa|first2=J.F.|last2=Montenegro |journal=Mathematical Proceedings of the Cambridge Philosophical Society |issn=0305-0041 |volume=144 |issue=3 |year=2008 |pages=673–682 |doi=10.1017/s0305004107000965}}.
  • {{citation |first=Isaac |last=Chavel |title=Eigenvalues in Riemannian geometry|series=Pure Appl. Math.|volume=115 |publisher=Academic Press |year=1984}}.
  • {{Citation |authorlink=Shiu-Yuen Cheng |last1=Cheng |first1=Shiu Yuen |title=Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2 |publisher=American Mathematical Society |location = Providence, R.I. |mr=0378003 |year=1975a |chapter=Eigenfunctions and eigenvalues of Laplacian |pages = 185–193}}
  • {{citation |first=Shiu Yuen |last=Cheng |title=Eigenvalue Comparison Theorems and its Geometric Applications |journal=Math. Z.|volume=143 |pages=289–297 |year=1975b |doi = 10.1007/BF01214381}}.
  • {{citation |title = Eigenvalue Comparison for Tubular Domains |first = Jeffrey M. |last=Lee |journal = Proceedings of the American Mathematical Society |volume=109 |year=1990 |pages=843–848 |jstor=2048228 |doi = 10.2307/2048228 |issue=3 |publisher = American Mathematical Society}}.
  • {{citation |first=Henry |last=McKean |authorlink=Henry McKean |title= An upper bound for the spectrum of △ on a manifold of negative curvature|journal=Journal of Differential Geometry |volume=4 |year=1970 |pages=359–366}}.
  • {{citation |first1 = Jeffrey M. |last1=Lee|first2=Ken|last2=Richardson |title=Riemannian foliations and eigenvalue comparison |journal=Ann. Global Anal. Geom. |volume=16 |year=1998 |pages=497–525 |doi=10.1023/A:1006573301591}}/

2 : Theorems in Riemannian geometry|Chinese mathematical discoveries

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 12:15:07