词条 | Circumbinary planet | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
A circumbinary planet is a planet that orbits two stars instead of one. Because of the short orbits of some binary stars, the only stable orbits for planets are outside the orbit of the two stars.[1] New studies showed that there is a strong hint that the planet and stars originate from a single disk.[2] Observations and discoveriesConfirmed planetsPSR B1620-26The first confirmed circumbinary extrasolar planet was found orbiting the system PSR B1620-26, which contains a millisecond pulsar and a white dwarf and is located in the globular cluster M4. The existence of the third body was first reported in 1993,[2] and was suggested to be a planet based on 5 years of observational data.[3] In 2003 the planet was characterised as being 2.5 times the mass of Jupiter in a low eccentricity orbit with a semimajor axis of 23 AU.[4] HD 202206The first circumbinary extrasolar planet around a main sequence star was found in 2005 in the system HD 202206: a Jupiter-size planet orbiting a system composed of a Sun-like star and a brown dwarf.[5] HW VirginisAnnounced in 2008, the eclipsing binary system HW Virginis, comprising a subdwarf B star and a red dwarf, was claimed to also host a planetary system. The claimed planets have masses at least 8.47 and 19.23 times that of Jupiter respectively, and were proposed to have orbital periods of 9 and 16 years. The proposed outer planet is sufficiently massive that it may be considered to be a brown dwarf under some definitions of the term,[6] but the discoverers claimed that the orbital configuration implies it would have formed like a planet from a circumbinary disc. Both planets may have accreted additional mass when the primary star lost material during its red giant phase.[7] Further work on the system[8] showed that the orbits proposed for the candidate planets were catastrophically unstable on timescales far shorter than the age of the system. Indeed, the authors found that the system was so unstable that it simply cannot exist, with mean lifetimes of less than a thousand years across the whole range of plausible orbital solutions. Like other planetary systems proposed around similar evolved binary star systems, it seems likely that some mechanism other than claimed planets is responsible for the observed behaviour of the binary stars - and that the claimed planets simply do not exist. Kepler-16On 15 September 2011, astronomers, using data from NASA's Kepler spacecraft, announced the first partial-eclipse-based discovery of a circumbinary planet.[9][10] The planet, called Kepler-16b, is about 200 light years from Earth, in the constellation Cygnus, and is believed to be a frozen world of rock and gas, about the mass of Saturn. It orbits two stars that are also circling each other, one about two-thirds the size of our sun, the other about a fifth the size of our sun. Each orbit of the stars by the planet takes 229 days, while the planet orbits the system's center of mass every 225 days; the stars eclipse each other every three weeks or so. Kepler-453In 2015, astronomers confirmed the existence of Kepler-453b, a circumbinary planet with orbital period of 240.5 days.[12] Kepler-1647A new planet, called Kepler-1647b, was announced on June 13, 2016. It was discovered using the Kepler telescope. The planet is a gas giant, similar in size to Jupiter which makes it the second largest circumbinary planet ever discovered, next to PSR B1620-26. It is located in the stars' habitable zone, and it orbits the star system in 1107 days, which makes it the longest period of any confirmed transiting exoplanet so far.[11] MXB 1658-298A massive planet around this Low Mass X-ray Binary (LMXB) system was found by the method of periodic delay in X-ray eclipses. Other observationsClaims of a planet discovered via microlensing, orbiting the close binary pair MACHO-1997-BLG-41, were announced in 1999.[12] The planet was said to be in a wide orbit around the two red dwarf companions, but the claims were later retracted, as it turned out the detection could be better explained by the orbital motion of the binary stars themselves.[13] Several attempts have been made to detect planets around the eclipsing binary system CM Draconis, itself part of the triple system GJ 630.1. The eclipsing binary has been surveyed for transiting planets, but no conclusive detections were made and eventually the existence of all the candidate planets was ruled out.[14][15] More recently, efforts have been made to detect variations in the timing of the eclipses of the stars caused by the reflex motion associated with an orbiting planet, but at present no discovery has been confirmed. The orbit of the binary stars is eccentric, which is unexpected for such a close binary as tidal forces ought to have circularised the orbit. This may indicate the presence of a massive planet or brown dwarf in orbit around the pair whose gravitational effects maintain the eccentricity of the binary.[16] Circumbinary discs that may indicate processes of planet formation have been found around several stars, and are in fact common around binaries with separations less than 3 AU.[17][18] One notable example is in the HD 98800 system, which comprises two pairs of binary stars separated by around 34 AU. The binary subsystem HD 98800 B, which consists of two stars of 0.70 and 0.58 solar masses in a highly eccentric orbit with semimajor axis 0.983 AU, is surrounded by a complex dust disc that is being warped by the gravitational effects of the mutually-inclined and eccentric stellar orbits.[19][20] The other binary subsystem, HD 98800 A, is not associated with significant amounts of dust.[21] {{Clear}}System characteristicsThe Kepler results indicate circumbinary planetary systems are relatively common (as of October 2013 the spacecraft had found seven planets out of roughly 1000 eclipsing binaries searched). Stellar configurationThere is a wide range of stellar configurations for which circumbinary planets can exist. Primary star masses range from 0.69 to 1.53 solar masses (Kepler-16 A & PH1 Aa), star mass ratios from 1.03 to 3.76 (Kepler-34 & PH1), and binary eccentricity from 0.023 to 0.521 (Kepler-47 & Kepler-34). The distribution of planet eccentricities, range from nearly circular e=0.007 to a significant e=0.182 (Kepler-16 & Kepler-34). No orbital resonances with the binary have been found.[22] Orbital dynamicsThe binary stars Kepler-34 A and B have a highly eccentric orbit (e=0.521) around each other and their interaction with the planet is strong enough that a deviation from Kepler's laws is noticeable after just one orbit.[22]{{clarify|reason=What kind of deviation, and how does the planet affect it?|date=May 2018}} Co-planarityAll Kepler circumbinary planets that were known as of August 2013 orbit their stars very close to the plane of the binary (in a prograde direction) which suggests a single-disk formation.[22] However, not all circumbinary planets are co-planar with the binary: Kepler-413b is tilted 2.5 degrees which may be due to the gravitational influence of other planets or a third star.[23][24] Taking into account the selection biases, the average mutual inclination between the planetary orbits and the stellar binaries is within ~3 degrees, consistent with the mutual inclinations of planets in multi-planetary systems.[25] Axial tilt precessionThe axial tilt of Kepler-413b's spin axis might vary by as much as 30 degrees over 11 years, leading to rapid and erratic changes in seasons.[24] MigrationSimulations show that it is likely that all of the circumbinary planets known prior to a 2014 study migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.[26] Semi-major axes close to critical radiusThe minimum stable star to circumbinary planet separation is about 2-4 times the binary star separation, or orbital period about 3-8 times the binary period. The innermost planets in all the Kepler circumbinary systems have been found orbiting close to this radius. The planets have semi-major axes that lie between 1.09 and 1.46 times this critical radius. The reason could be that migration might become inefficient near the critical radius, leaving planets just outside this radius.[22] Recently, it has been found that the distribution of the innermost planetary semi-major axes is consistent with a log-uniform distribution, taking into account the selection biases, where closer-in planets can be detected more easily.[25] This questions the pile-up of planets near the stability limit as well as the dominance of planet migration. Absence of planets around shorter period binariesMost Kepler eclipsing binaries have periods less than 1 day but the shortest period of a Kepler eclipsing binary hosting a planet is 7.4 days (Kepler-47). The short-period binaries are unlikely to have formed in such a tight orbit and their lack of planets may be related to the mechanism that removed angular momentum allowing the stars to orbit so closely.[22] One exception is the planet around an X-ray binary MXB_1658-298, which has an orbital period of 7.1 hrs. Planet size limitAs of June 2016, all but one of the confirmed Kepler circumbinary planets are smaller than Jupiter. This cannot be a selection effect because larger planets are easier to detect.[22] Simulations had predicted this would be the case.[27] Habitability{{main|Habitability of binary star systems}}All the Kepler circumbinary planets are either close to or actually in the habitable zone. None of them are terrestrial planets, but large moons of such planets could be habitable. Because of the stellar binarity, the insolation received by the planet will likely be time-varying in a way quite unlike the regular sunlight Earth receives.[22] Transit ProbabilityCircumbinary planets are generally more likely to transit than planets around a single star. The probability when the planetary orbit overlaps with the stellar binary orbit has been obtained.[28] For planets orbiting eclipsing stellar binaries (such as the detected systems), the analytical expression of the transit probability in a finite observation time has been obtained.[25] List of circumbinary planetsConfirmed circumbinary planets
Unconfirmed or doubtful
† Orbital period measurement in years (hand calculated Fermi estimate will show this). A pair of planets around HD 202206 or a circumbinary planet?HD 202206 is a Sun-like star orbited by two objects, one of 17 Mj and one of 2.4 Mj. The classification of HD 202206 b as a brown dwarf or "superplanet" is currently unclear. The two objects could have both formed in a protoplanetary disk with the inner one becoming a superplanet, or the outer planet could have formed in a circumbinary disk.[54]A dynamical analysis of the system further shows a 5:1 mean motion resonance between the planet and the brown dwarf.[30] These observations raise the question of how this system was formed, but numerical simulations show that a planet formed in a circumbinary disk can migrate inward until it is captured in resonance.[55] FictionCircumbinary planets are common in many science fiction stories:
References1. ^{{cite journal | arxiv = astro-ph/9809315 | doi=10.1086/300695 | bibcode=1999AJ....117..621H | volume=117 | issue=1 | title=Long-Term Stability of Planets in Binary Systems | year=1999 | journal=The Astronomical Journal | pages=621–628 | last1 = Holman | first1 = Matthew J. | last2 = Wiegert | first2 = Paul A.}} 2. ^{{cite conference|author=Backer, D.C.|title=A pulsar timing tutorial and NRAO Green Bank observations of PSR 1257+12|year=1993|booktitle=Planets around Pulsars|publisher=California Institute of Technology|location=Pasadena|pages=11–18|bibcode=1993ASPC...36...11B}} 3. ^1 {{cite journal|author-link1=Stephen Thorsett |last1=Thorsett |first1=S. E. |last2=Arzoumanian |first2=Z. |last3=Taylor |first3=J. H.|title=PSR B1620-26 - A binary radio pulsar with a planetary companion?|journal=The Astrophysical Journal Letters|volume=412|issue=1|pages=L33–L36|doi=10.1086/186933|bibcode=1993ApJ...412L..33T|year=1993}} 4. ^{{cite journal|author1=Sigurðsson, Steinn |author2=Richer, Harvey B. |author3=Hansen, Brad M. |author4=Stairs, Ingrid H. |author5=Thorsett, Stephen E. |title=A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation|journal=Science|volume=301|issue=5630|pages=193–196|year=2003|doi=10.1126/science.1086326|bibcode=2003Sci...301..193S|pmid=12855802|arxiv = astro-ph/0307339 }} 5. ^1 {{cite journal|author1=Correia, A. C. M. |author2=Udry, S. |author3=Mayor, M. |author4=Laskar, J. |author5=Naef, D. |author6=Pepe, F. |author7=Queloz, D. |author8=Santos, N. C. |title=The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet?|journal=Astronomy and Astrophysics|volume=440|issue=2|pages=751–758|year=2005|doi=10.1051/0004-6361:20042376|bibcode=2005A&A...440..751C|arxiv = astro-ph/0411512 }} 6. ^{{cite web|url=http://www.dtm.ciw.edu/users/boss/definition.html|title=Definition of a "Planet"|publisher=Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union|accessdate=2009-07-04}} 7. ^{{cite journal|title=The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets|author1=Lee, Jae Woo |author2=Kim, Seung-Lee |author3=Kim, Chun-Hwey |author4=Koch, Robert H. |author5=Lee, Chung-Uk |author6=Kim, Ho-Il |author7=Park, Jang-Ho |year=2009|journal=The Astronomical Journal|volume=137|issue=2|pages=3181–3190|doi=10.1088/0004-6256/137/2/3181|bibcode=2009AJ....137.3181L|arxiv = 0811.3807 }} 8. ^{{cite journal|title=A dynamical analysis of the proposed circumbinary HW Virginis planetary system|author1=Horner, J.|author2=Wittenmyer, R. A.|author3=Marshall, J. P.|author4=Tinney, C. G.|year=2012|journal=Monthly Notices of the Royal Astronomical Society|volume=427|issue=4|pages=2812–2823|doi=10.1111/j.1365-2966.2012.22046.x|bibcode=2012MNRAS.427.2812H|arxiv = 1209.0608 }} 9. ^Doyle, Laurance, et al. Science, 16 September 2011. 10. ^"Kepler uncovers planet orbiting two stars", Astronomy, January 2012, p. 23. 11. ^{{cite web | url=https://www.nasa.gov/feature/goddard/2016/new-planet-is-largest-discovered-that-orbits-two-suns | title=New Planet Is Largest Discovered That Orbits Two Suns | publisher=NASA | date=June 13, 2016 | accessdate=June 14, 2016}} 12. ^{{cite journal|author1=Bennett, D. P. |author2=Rhie, S. H. |author3=Becker, A. C. |author4=Butler, N. |author5=Dann, J. |author6=Kaspi, S. |author7=Leibowitz, E. M. |author8=Lipkin, Y. |author9=Maoz, D. |author10=Mendelson, H. |author11=Peterson, B. A. |author12=Quinn, J. |author13=Shemmer, O. |author14=Thomson, S. |author15=Turner, S. E. |title=Discovery of a planet orbiting a binary star system from gravitational microlensing|journal=Nature|volume=402|issue=6757|pages=57–59|year=1999|doi=10.1038/46990|bibcode=1999Natur.402...57B|arxiv = astro-ph/9908038 |url=https://digital.library.unt.edu/ark:/67531/metadc1225792/ |type=Submitted manuscript }} 13. ^{{cite journal|author1=Albrow, M. D. |author2=Beaulieu, J.-P. |author3=Caldwell, J. A. R. |author4=Dominik, M. |author5=Gaudi, B. S. |author6=Gould, A. |author7=Greenhill, J. |author8=Hill, K. |author9=Kane, S. |author10=Martin, R. |author11=Menzies, J. |author12=Naber, R. M. |author13=Pollard, K. R. |author14=Sackett, P. D. |author15=Sahu, K. C. |author16=Vermaak, P. |author17=Watson, R. |author18=Williams, A. |author19=Bond, H. E. |author20=van Bemmel, I. M. |title=Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41|journal=The Astrophysical Journal|year=2000|volume=534|issue=2|pages=894–906|doi=10.1086/308798|bibcode=2000ApJ...534..894A|arxiv = astro-ph/9910307 |url=http://cds.cern.ch/record/403976 |type=Submitted manuscript }} 14. ^{{cite web|url=http://www.iac.es/project/tep/tephome.html|title=The TEP network}} 15. ^{{cite journal|title=Observational Limits on Terrestrial-sized Inner Planets around the CM Draconis System Using the Photometric Transit Method with a Matched-Filter Algorithm|author1=Doyle, Laurance R. |author2=Deeg, Hans J. |author3=Kozhevnikov, Valerij P. |author4=Oetiker, Brian |author5=Martín, Eduardo L. |author6=Blue, J. Ellen |author7=Rottler, Lee |author8=Stone, Remington P. S. |author9=Ninkov, Zoran |author10=Jenkins, Jon M. |author11=Schneider, Jean |author12=Dunham, Edward W. |author13=Doyle, Moira F. |author14=Paleologou, Efthimious |journal=The Astrophysical Journal|volume=535|issue=1|pages=338–349|year=2000|doi=10.1086/308830|bibcode=2000ApJ...535..338D|arxiv = astro-ph/0001177 }} 16. ^{{cite journal|author1=Morales, Juan Carlos |author2=Ribas, Ignasi |author3=Jordi, Carme |author4=Torres, Guillermo |author5=Gallardo, José |author6=Guinan, Edward F. |author7=Charbonneau, David |author8=Wolf, Marek |author9=Latham, David W. |author10=Anglada-Escudé, Guillem |author11=Bradstreet, David H. |author12=Everett, Mark E. |author13=O'Donovan, Francis T. |author14=Mandushev, Georgi |author15=Mathieu, Robert D. |title=Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis|journal=The Astrophysical Journal|volume=691|issue=2|pages=1400–1411|year=2009|doi=10.1088/0004-637X/691/2/1400|bibcode=2009ApJ...691.1400M|arxiv = 0810.1541 }} 17. ^{{cite news|title=Worlds with Double Sunsets Common|agency=Space.com|author=Ker Than|url=http://www.space.com/scienceastronomy/070329_double_sunsets.html|date=2007-03-07}} 18. ^{{cite journal|author1=Trilling, D. E. |author2=Stansberry, J. A. |author3=Stapelfeldt, K. R. |author4=Rieke, G. H. |author5=Su, K. Y. L. |author6=Gray, R. O. |author7=Corbally, C. J. |author8=Bryden, G. |author9=Chen, C. H. |author10=Boden, A. |author11=Beichman, C. A. |title=Debris disks in main-sequence binary systems.|journal=The Astrophysical Journal|volume=658|issue=2|pages=1264–1288|year=2007|doi=10.1086/511668|bibcode=2007ApJ...658.1289T|arxiv = astro-ph/0612029 }} 19. ^{{cite journal|author1=Akeson, R. L. |author2=Rice, W. K. M. |author3=Boden, A. F. |author4=Sargent, A. I. |author5=Carpenter, J. M. |author6=Bryden, G. |title=The Circumbinary Disk of HD 98800B: Evidence for Disk Warping|year=2007|journal=The Astrophysical Journal|volume=670|issue=2|pages=1240–1246|doi=10.1086/522579|bibcode=2007ApJ...670.1240A|arxiv = 0708.2390 }} 20. ^{{cite journal|author1=Verrier, P. E. |author2=Evans, N. W. |title=HD 98800: a most unusual debris disc|journal=Monthly Notices of the Royal Astronomical Society|volume=390|issue=4|pages=1377–1387|year=2008|doi=10.1111/j.1365-2966.2008.13854.x|bibcode=2008MNRAS.390.1377V|arxiv = 0807.5105 }} 21. ^{{cite journal|author1=Prato, L. |author2=Ghez, A. M. |author3=Piña, R. K. |author4=Telesco, C. M. |author5=Fisher, R. S. |author6=Wizinowich, P. |author7=Lai, O. |author8=Acton, D. S. |author9=Stomski, P. |title=Keck Diffraction-limited Imaging of the Young Quadruple Star System HD 98800|journal=The Astrophysical Journal|volume=549|issue=1|pages=590–598|year=2001|doi=10.1086/319061|bibcode=2001ApJ...549..590P|arxiv = astro-ph/0011135 }} 22. ^1 2 3 4 5 6 7 [https://arxiv.org/abs/1308.6328 Recent Kepler Results On Circumbinary Planets], William F. Welsh, Jerome A. Orosz, Joshua A. Carter, Daniel C. Fabrycky, (Submitted on 28 Aug 2013) 23. ^{{cite web |last1=Johnson |first1=Michele |last2=Jenkins |first2=Ann |last3=Villard |first3=Ray |last4=Harrington |first4=J.D. |title=Kepler Finds a Very Wobbly Planet |url=http://www.nasa.gov/ames/kepler-finds-a-very-wobbly-planet |date=4 February 2014 |work=NASA |accessdate=5 February 2014 }} 24. ^1 [https://arxiv.org/abs/1401.7275 Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet], Veselin B. Kostov, Peter R. McCullough, Joshua A. Carter, Magali Deleuil, Rodrigo F. Diaz, Daniel C. Fabrycky, Guillaume Hebrard, Tobias C. Hinse, Tsevi Mazeh, Jerome A. Orosz, Zlatan I. Tsvetanov, William F. Welsh, (Submitted on 28 Jan 2014) 25. ^1 2 {{Cite journal|last=Li|first=Gongjie|last2=Holman|first2=Matt|last3=Tao|first3=Molei|year=2016|title=Uncovering Circumbinary Planetary Architectural Properties from Selection Biases|journal=The Astrophysical Journal|volume=831|issue=1|doi=10.3847/0004-637X/831/1/96|pages=96|arxiv = 1608.01768 |bibcode = 2016ApJ...831...96L }} 26. ^[https://arxiv.org/abs/1402.0509 Forming Circumbinary Planets: N-body Simulations of Kepler-34], Stefan Lines, Zoe M. Leinhardt, Sijme-Jan Paardekooper, Clement Baruteau, Philippe Thebault, (Submitted on 3 Feb 2014) 27. ^[https://arxiv.org/abs/0803.2000 On the formation and migration of giant planets in circumbinary discs], Arnaud Pierens, Richard P. Nelson(Submitted on 13 Mar 2008) 28. ^{{Cite journal|last=Martin|first=David|last2=Triaud|first2=Amaury|title=Circumbinary planets - why they are so likely to transit|journal=MNRAS|volume=449|issue=1|doi=10.1093/mnras/stv121|year=2015|pages=781–793|arxiv=1501.03631|bibcode=2015MNRAS.449..781M}} 29. ^{{Cite journal|last=Sigurdsson|first=S.|date=2003-07-11|title=A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation|url=http://science.sciencemag.org/content/301/5630/193.full.pdf+html|journal=Science|language=en|volume=301|issue=5630|pages=193–196|doi=10.1126/science.1086326|pmid=12855802|issn=0036-8075|bibcode=2003Sci...301..193S|arxiv = astro-ph/0307339 }} 30. ^1 {{Cite journal|last=Couetdic|first=J.|last2=Laskar|first2=J.|last3=Correia|first3=A. C. M.|last4=Mayor|first4=M.|last5=Udry|first5=S.|date=2010-09-01|title=Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits|url=http://www.aanda.org/articles/aa/abs/2010/11/aa13635-09/aa13635-09.html|journal=Astronomy and Astrophysics|language=en|volume=519|pages=A10|doi=10.1051/0004-6361/200913635|issn=0004-6361|bibcode=2010A&A...519A..10C|arxiv = 0911.1963 }} 31. ^{{Cite journal|last=Beuermann|first=K.|last2=Buhlmann|first2=J.|last3=Diese|first3=J.|last4=Dreizler|first4=S.|last5=Hessman|first5=F. V.|last6=Husser|first6=T.-O.|last7=Miller|first7=G. F.|last8=Nickol|first8=N.|last9=Pons|first9=R.|date=2011-02-01|title=The giant planet orbiting the cataclysmic binary DP Leonis|url=http://www.aanda.org/articles/aa/abs/2011/02/aa15942-10/aa15942-10.html|journal=Astronomy & Astrophysics|language=en|volume=526|pages=A53|doi=10.1051/0004-6361/201015942|issn=0004-6361|bibcode=2011A&A...526A..53B|arxiv = 1011.3905 }} 32. ^{{Cite journal|last=Qian|first=S.-B.|last2=Liao|first2=W.-P.|last3=Zhu|first3=L.-Y.|last4=Dai|first4=Z.-B.|date=2010-01-01|title=Detection of a Giant Extrasolar Planet Orbiting the Eclipsing Polar DP Leo|url=http://stacks.iop.org/2041-8205/708/i=1/a=L66|journal=The Astrophysical Journal Letters|language=en|volume=708|issue=1|pages=L66|doi=10.1088/2041-8205/708/1/L66|issn=2041-8205|bibcode=2010ApJ...708L..66Q}} 33. ^1 2 3 {{Cite journal|last=Beuermann|first=K.|last2=Hessman|first2=F. V.|last3=Dreizler|first3=S.|last4=Marsh|first4=T. R.|last5=Parsons|first5=S. G.|last6=Winget|first6=D. E.|last7=Miller|first7=G. F.|last8=Schreiber|first8=M. R.|last9=Kley|first9=W.|date=2010-10-01|title=Two planets orbiting the recently formed post-common envelope binary NN Serpentis|url=http://www.aanda.org/articles/aa/abs/2010/13/aa15472-10/aa15472-10.html|journal=Astronomy and Astrophysics|language=en|volume=521|pages=L60|doi=10.1051/0004-6361/201015472|issn=0004-6361|bibcode=2010A&A...521L..60B|arxiv = 1010.3608 }} 34. ^1 {{Cite journal|arxiv=1109.3432|title=Kepler-16: A Transiting Circumbinary Planet|journal=Science|volume=333|issue=6049|pages=1602–6|author=Laurance R. Doyle|display-authors=etal|year=2011|doi=10.1126/science.1210923|pmid=21921192|bibcode = 2011Sci...333.1602D }} 35. ^1 2 3 {{cite journal|last=Welsh|first=William F.|title=Transiting circumbinary planets Kepler-34 b and Kepler-35 b|journal=Nature|volume=481|issue=7382|pages=475–9|year=2012|doi=10.1038/nature10768|pmid=22237021|url=http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10768.html|accessdate=18 January 2012|bibcode = 2012Natur.481..475W |arxiv = 1204.3955 |display-authors=etal|hdl=1721.1/77037}} 36. ^{{Cite journal|last=Lee|first=Jae Woo|last2=Hinse|first2=Tobias Cornelius|last3=Youn|first3=Jae-Hyuck|last4=Han|first4=Wonyong|date=2014-12-11|title=The pulsating sdB+M eclipsing system NY Virginis and its circumbinary planets|url=http://mnras.oxfordjournals.org/content/445/3/2331|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=445|issue=3|pages=2331–2339|doi=10.1093/mnras/stu1937|issn=0035-8711|bibcode=2014MNRAS.445.2331L|arxiv = 1409.4907 }} 37. ^{{Cite journal|last=Qian|first=S.-B.|last2=Zhu|first2=L.-Y.|last3=Dai|first3=Z.-B.|last4=Fernández-Lajús|first4=E.|last5=Xiang|first5=F.-Y.|last6=He|first6=J.-J.|date=2012-01-01|title=Circumbinary Planets Orbiting the Rapidly Pulsating Subdwarf B-type Binary NY Vir|url=http://stacks.iop.org/2041-8205/745/i=2/a=L23|journal=The Astrophysical Journal Letters|language=en|volume=745|issue=2|pages=L23|doi=10.1088/2041-8205/745/2/L23|issn=2041-8205|bibcode=2012ApJ...745L..23Q|arxiv = 1112.4269 }} 38. ^1 {{Cite journal|last=Qian|first=S.-B.|last2=Liu|first2=L.|last3=Zhu|first3=L.-Y.|last4=Dai|first4=Z.-B.|last5=Lajús|first5=E. Fernández|last6=Baume|first6=G. L.|date=2012-05-01|title=A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae|url=http://mnrasl.oxfordjournals.org/content/422/1/L24|journal=Monthly Notices of the Royal Astronomical Society: Letters|language=en|volume=422|issue=1|pages=L24–L27|doi=10.1111/j.1745-3933.2012.01228.x|issn=1745-3925|bibcode=2012MNRAS.422L..24Q|arxiv = 1201.4205 }} 39. ^1 {{Cite journal|last=Orosz|first=Jerome A.|last2=Welsh|first2=William F.|last3=Carter|first3=Joshua A.|last4=Brugamyer|first4=Erik|last5=Buchhave|first5=Lars A.|last6=Cochran|first6=William D.|last7=Endl|first7=Michael|last8=Ford|first8=Eric B.|last9=MacQueen|first9=Phillip|date=2012-01-01|title=The Neptune-sized Circumbinary Planet Kepler-38b|url=http://stacks.iop.org/0004-637X/758/i=2/a=87|journal=The Astrophysical Journal|language=en|volume=758|issue=2|pages=87|doi=10.1088/0004-637X/758/2/87|issn=0004-637X|bibcode=2012ApJ...758...87O|arxiv = 1208.3712 }} 40. ^1 2 3 {{Cite journal|last=Orosz|first=J. A.|last2=Welsh|first2=W. F.|last3=Carter|first3=J. A.|last4=Fabrycky|first4=D. C.|last5=Cochran|first5=W. D.|last6=Endl|first6=M.|last7=Ford|first7=E. B.|last8=Haghighipour|first8=N.|last9=MacQueen|first9=P. J.|date=2012-09-21|title=Kepler-47: A Transiting Circumbinary Multiplanet System|url=http://science.sciencemag.org/content/337/6101/1511.full.pdf+html|journal=Science|language=en|volume=337|issue=6101|pages=1511–1514|doi=10.1126/science.1228380|pmid=22933522|issn=0036-8075|bibcode=2012Sci...337.1511O|arxiv = 1208.5489 }} 41. ^1 {{Cite journal|last=Schwamb|first=Megan E.|last2=Orosz|first2=Jerome A.|last3=Carter|first3=Joshua A.|last4=Welsh|first4=William F.|last5=Fischer|first5=Debra A.|last6=Guillermo Torres|last7=Howard|first7=Andrew W.|last8=Crepp|first8=Justin R.|last9=Keel|first9=William C.|date=2013-01-01|title=Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System|url=http://stacks.iop.org/0004-637X/768/i=2/a=127|journal=The Astrophysical Journal|language=en|volume=768|issue=2|pages=127|doi=10.1088/0004-637X/768/2/127|issn=0004-637X|bibcode=2013ApJ...768..127S|arxiv = 1210.3612 }} 42. ^1 {{Cite journal|last=Currie|first=Thayne|last2=Burrows|first2=Adam|last3=Daemgen|first3=Sebastian|date=2014-01-01|title=A First-look Atmospheric Modeling Study of the Young Directly Imaged Planet-mass Companion, ROXs 42Bb|url=http://stacks.iop.org/0004-637X/787/i=2/a=104|journal=The Astrophysical Journal|language=en|volume=787|issue=2|pages=104|doi=10.1088/0004-637X/787/2/104|issn=0004-637X|bibcode=2014ApJ...787..104C|arxiv = 1404.0131 }} 43. ^1 {{Cite journal|last=Kraus|first=Adam L.|last2=Ireland|first2=Michael J.|last3=Cieza|first3=Lucas A.|last4=Hinkley|first4=Sasha|last5=Dupuy|first5=Trent J.|last6=Bowler|first6=Brendan P.|last7=Liu|first7=Michael C.|date=2014-01-01|title=Three Wide Planetary-mass Companions to FW Tau, ROXs 12, and ROXs 42B|url=http://stacks.iop.org/0004-637X/781/i=1/a=20|journal=The Astrophysical Journal|language=en|volume=781|issue=1|pages=20|doi=10.1088/0004-637X/781/1/20|issn=0004-637X|bibcode=2014ApJ...781...20K|arxiv = 1311.7664 }} 44. ^{{Cite journal|last=Bailey|first=Vanessa|last2=Meshkat|first2=Tiffany|last3=Reiter|first3=Megan|last4=Morzinski|first4=Katie|last5=Males|first5=Jared|last6=Su|first6=Kate Y. L.|last7=Hinz|first7=Philip M.|last8=Kenworthy|first8=Matthew|last9=Stark|first9=Daniel|date=2014-01-01|title=HD 106906 b: A Planetary-mass Companion Outside a Massive Debris Disk|url=http://stacks.iop.org/2041-8205/780/i=1/a=L4|journal=The Astrophysical Journal Letters|language=en|volume=780|issue=1|pages=L4|doi=10.1088/2041-8205/780/1/L4|issn=2041-8205|bibcode=2014ApJ...780L...4B|arxiv = 1312.1265 }} 45. ^{{Cite journal|last=Lagrange|first=A.-M.|last2=Langlois|first2=M.|last3=Gratton|first3=R.|last4=Maire|first4=A.-L.|last5=Milli|first5=J.|last6=Olofsson|first6=J.|last7=Vigan|first7=A.|last8=Bailey|first8=V.|last9=Mesa|first9=D.|date=2016-02-01|title=A narrow, edge-on disk resolved around HD 106906 with SPHERE|url=http://www.aanda.org/articles/aa/abs/2016/02/aa27264-15/aa27264-15.html|journal=Astronomy & Astrophysics|language=en|volume=586|pages=L8|doi=10.1051/0004-6361/201527264|issn=0004-6361|bibcode=2016A&A...586L...8L|arxiv = 1510.02511 }} 46. ^1 {{Cite journal|last=Kostov|first=V. B.|last2=McCullough|first2=P. R.|last3=Carter|first3=J. A.|last4=Deleuil|first4=M.|last5=Díaz|first5=R. F.|last6=Fabrycky|first6=D. C.|last7=Hébrard|first7=G.|last8=Hinse|first8=T. C.|last9=Mazeh|first9=T.|date=2014-01-01|title=Kepler-413b: A Slightly Misaligned, Neptune-size Transiting Circumbinary Planet|url=http://stacks.iop.org/0004-637X/784/i=1/a=14|journal=The Astrophysical Journal|language=en|volume=784|issue=1|pages=14|doi=10.1088/0004-637X/784/1/14|issn=0004-637X|bibcode=2014ApJ...784...14K|arxiv = 1401.7275 }} 47. ^1 2 {{Cite journal|last=Welsh|first=William F.|last2=Orosz|first2=Jerome A.|last3=Short|first3=Donald R.|last4=Cochran|first4=William D.|last5=Endl|first5=Michael|last6=Erik Brugamyer|last7=Haghighipour|first7=Nader|last8=Buchhave|first8=Lars A.|last9=Doyle|first9=Laurance R.|date=2015-01-01|title=Kepler 453 b—The 10th Kepler Transiting Circumbinary Planet|url=http://stacks.iop.org/0004-637X/809/i=1/a=26|journal=The Astrophysical Journal|language=en|volume=809|issue=1|pages=26|doi=10.1088/0004-637X/809/1/26|issn=0004-637X|bibcode=2015ApJ...809...26W|arxiv = 1409.1605 }} 48. ^{{Cite journal|last=Kostov|first=Veselin B.|last2=Orosz|first2=Jerome A.|last3=Welsh|first3=William F.|last4=Doyle|first4=Laurance R.|last5=Fabrycky|first5=Daniel C.|last6=Haghighipour|first6=Nader|last7=Quarles|first7=Billy|last8=Short|first8=Donald R.|last9=Cochran|first9=William D.|date=2015-12-01|title=Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet|arxiv=1512.00189|doi=10.3847/0004-637X/827/1/86|volume=827|issue=1|journal=The Astrophysical Journal|page=86|bibcode = 2016ApJ...827...86K }} 49. ^{{Cite journal |arxiv = 1609.06720 |title = The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c|journal = The Astronomical Journal|volume = 152|issue = 5|pages = 125|last1 = Bennett|first1 = D. P.|last2 = Rhie|first2 = S. G.|last3 = Udalski|first3 = A.|last4 = Gould|first4 = A.|last5 = Tsapras|first5 = Y.|last6 = Kubas|first6 = D.|last7 = Bond|first7 = I. A.|last8 = Greenhill|first8 = J.|last9 = Cassan|first9 = A.|last10 = Rattenbury|first10 = N. J.|last11 = Boyajian|first11 = T. S.|last12 = Luhn|first12 = J.|last13 = Penny|first13 = M. T.|last14 = Anderson|first14 = J.|last15 = Abe|first15 = F.|last16 = Bhattacharya|first16 = A.|last17 = Botzler|first17 = C. S.|last18 = Donachie|first18 = M.|last19 = Freeman|first19 = M.|last20 = Fukui|first20 = A.|last21 = Hirao|first21 = Y.|last22 = Itow|first22 = Y.|last23 = Koshimoto|first23 = N.|last24 = Li|first24 = M. C. A.|last25 = Ling|first25 = C. H.|last26 = Masuda|first26 = K.|last27 = Matsubara|first27 = Y.|last28 = Muraki|first28 = Y.|last29 = Nagakane|first29 = M.|last30 = Ohnishi|first30 = K.|year = 2016|doi = 10.3847/0004-6256/152/5/125|displayauthors = 29}} 50. ^{{cite journal | bibcode = 2017MNRAS.468L.118J | title=Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658-298 | journal=Monthly Notices of the Royal Astronomical Society | volume=468 | issue=1 | page=L118 | year=2017 | last1=Jain |first1=Chetana |last2=Paul |first2=Biswajit |last3=Sharma |first3=Rahul |last4=Jaleel |first4=Abdul |last5=Dutta |first5=Anjan | doi=10.1093/mnrasl/slx039|arxiv = 1703.04433 }} 51. ^{{Cite journal |arxiv = 1703.04433|last1 = Holman|first1 = Matthew|title = Indication of a massive circumbinary planet orbiting the Low Mass X-ray Binary MXB 1658-298|journal = Monthly Notices of the Royal Astronomical Society: Letters|volume = 468|pages = L118–L122|last2 = Wiegert|first2 = Paul|last3 = Sharma|first3 = Rahul|last4 = Jaleel|first4 = Abdul|last5 = Dutta|first5 = Anjan|year = 2017|doi = 10.1093/mnrasl/slx039}} 52. ^{{cite journal | bibcode = 2017MNRAS.468.2932G | title=Evidence for a planetary mass third body orbiting the binary star KIC 5095269 | journal=Monthly Notices of the Royal Astronomical Society | volume=468 | issue=3 | pages=2932–2937 | year=2017 |last1=Getley |first1=A. K. |last2=Carter |first2=B. |last3=King |first3=R. |last4=O'Toole |first4=S. | doi=10.1093/mnras/stx604|arxiv=1703.03518}} 53. ^{{Cite journal|last=Hinse|first=Tobias C.|last2=Haghighipour|first2=Nader|last3=Kostov|first3=Veselin B.|last4=Goździewski|first4=Krzysztof|date=2015-01-01|title=Predicting a Third Planet in the Kepler-47 Circumbinary System|url=http://stacks.iop.org/0004-637X/799/i=1/a=88|journal=The Astrophysical Journal|language=en|volume=799|issue=1|pages=88|doi=10.1088/0004-637X/799/1/88|issn=0004-637X|bibcode=2015ApJ...799...88H|arxiv = 1409.1349 }} 54. ^{{cite journal|author1=Correia, A. C. M. |author2=Udry, S. |author3=Mayor, M. |author4=Laskar, J. |author5=Naef, D. |author6=Pepe, F. |author7=Queloz, D. |author8=Santos, N. C. |title=The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet?|journal=Astronomy and Astrophysics|volume=440|issue=2|pages=751–758|year=2005|doi=10.1051/0004-6361:20042376|bibcode=2005A&A...440..751C|arxiv = astro-ph/0411512 }} 55. ^{{cite journal|author=Nelson, Richard P.|title=On the evolution of giant protoplanets forming in circumbinary discs|journal=Monthly Notices of the Royal Astronomical Society|volume=345|issue=1|pages=233–242|year=2003|doi=10.1046/j.1365-8711.2003.06929.x|bibcode=2003MNRAS.345..233N}} Further reading
3 : Types of planet|Binary stars|Circumbinary planets |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。