词条 | CityEngine | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
| name = Esri CityEngine | logo = Cityengine screenshot.jpg | logo size = 250px | screenshot = | caption = | author = Pascal Mueller, Simon Haegler, Andreas Ulmer, Simon Schubiger, Matthias Specht, Stefan Müller Arisona, Basil Weber | developer = Esri R&D Center Zurich | released = August 2008 | latest release version = 2018.1 | latest release date = Sept 18th, 2018 | latest preview version = | latest preview date = | operating system = Microsoft Windows, Mac OS X, and Linux | platform = | language = | genre = 3D computer graphics, geodesign, Procedural generation | license = Proprietary (Node-Locked or floating) | website = {{URL|http://www.esri.com/cityengine}} }}Esri CityEngine is a three-dimensional (3D) modeling software application developed by Esri R&D Center Zurich (formerly Procedural Inc.) and is specialized in the generation of 3D urban environments. With the procedural modeling approach, CityEngine supports the creation of detailed large-scale 3D city models. CityEngine works with architectural object placement and arrangement in the same manner that VUE manages terrain, ecosystems and atmosphere mapping. Unlike the traditional 3D modeling methodology which is using Computer-Aided Design (CAD) tools, CityEngine improves the shape generation via the rule-based system and data sets—similar as the Geographic Information System (GIS).[1] Due to this dominant feature, CityEngine has been broadly used in academic research or building virtual environments, e.g., urban planning, architecture, visualization, game development, entertainment, GIS, archeology, and cultural heritage. After being integrated with the Building Information Model (BIM), CityEngine can visualize the data of buildings in a larger urban context, enhancing its working scenario toward real construction projects.[2] History and releasesDeveloperIn 2007, Procedural Inc. was founded and separated from ETH Zurich, the top-ranking technology university in Switzerland. In the summer of 2011( ), Procedural Inc. was acquired by Esri Inc and became Esri R&D Center Zurich, continually studying in the fields of computer graphics, computer vision, software engineering, finance, marketing, and business.[3] SoftwareCityEngine was developed at ETH Zurich by the original author Pascal Mueller, co-founder and CEO of Procedural Inc. During his PhD research at ETH Computer Vision Lab, Mueller invented a number of techniques for procedural modeling of 3D architectural content which make up the foundation of CityEngine. Since CityEngine's public debut in the 2001 Siggraph conference,[4] additional research papers have contributed to featuring CityEngine. In 2008, the first commercial version of CityEngine was released by the Swiss company Procedural Inc and was used by professionals in urban planning, architecture, visualization, game development, entertainment, GIS, archeology, and cultural heritage. Releases
Basic and Advanced license
(*These prices are only valid in the U.S. and they may vary in different regions and dealers; some research universities provide the limited educational license to their faculties and students.) FeaturesProcedural Modeling Core (CGA Shape Grammar Language): CGA (computer generated architecture) rules allow to control mass, geometry assets, proportions, or texturing of buildings or streets on a citywide scale. (More details can be seen in the "Procedural Modeling" section.) Get Map Data: Users can create a 3D urban environment in few minutes via the download helper; Users can select a target location and import geo-referenced satellite imagery and 3D terrain of that place. If they are available in the OpenStreetMap (OSM), the data of street and building footprint can be easily retrieved to build 3D models via default CGA rules.[6]GIS/CAD Data Support: Support for industry-standard formats such as Esri Shapefile, File Geodatabase and OpenStreetMap which allow to import/export any geo-spatial/vector data. Parametric Modeling Interface: An interface to interactively control specific street or building parameters, such as the height or age (defined by the CGA rules) Dynamic City Layouts: Interactive design, editing and modification of urban layouts consisting of (curved) streets, blocks and parcels. Map-Controlled City Modeling: Global control of buildings and street parameters through image maps (for example the building heights or the landuse-mix). Street Networks Patterns: Street grow tools to design and construct urban layouts. Industry-Standard 3D Formats: CityEngine supports Collada, Autodesk FBX, 3DS, Wavefront OBJ, RenderMan RIB, mental ray MI and e-on software's Vue. Custom Report Generation: Users can script and generate rule-based reports to show social-economic figures (e.g., Gross Floor Area (GFA), Floor Area Ratio (FAR)) and to analyze their urban design proposals. 3D Web Scene Export: The model built in CityEngine can be directly exported and then used to create a WebGL scene in a browser. The 3D environment in the web scene can be rotated, explored, compared and commented online by multiple users. 360 VR Experience: The scenarios of urban environments can be used to generate a series of panoramic photos for publishing them online. Users can look around by turning their heads in virtual reality (VR) headsets. (Currently, it only supports Samsung Oculus Gear)[7]Python Scripting Interface: CityEngine provides ce.py as a built-in library. Facade Wizard: Rule creator and visual facade authoring tool. 3D Format Support for Game Engines (VR/AR): Now the model built in CityEngine can be directly exported to Unreal Engine, with the loading capacity of tens of millions of polygons and tens of thousands of objects, as well as non-limited material textures. Meanwhile, exporting to Unity3D still requires users to use Autodesk Maya as a transfer station. Available for All Platforms: Available for Windows (64bit only), Mac OS X (64bit), and Linux (32/64bit). Procedural ModelingCityEngine uses a procedural modeling approach to automatically generate models through a predefined rule set. The rules are defined through a CGA shape grammar system enabling the creation of complex parametric models. Users can change or add the shape grammar as much as needed providing room for new designs. Modeling an urban environment within CityEngine can start out with creating a street network either with the street drawing tool or with data imported from openstreetmap.org or from Esri data formats such as Shapefiles or File Geodatabase. The next step is to subdivide all the lots as many times as specified resulting in a map of lots and streets.[8] By selecting all or some of the lots CityEngine can be instructed to start generating the buildings. Due to the procedural modeling technology, all buildings can be made to vary from one another to achieve an urban aesthetic. At this point the city model can be re-designed and adjusted by changing parameters or the shape grammar itself. CGA Shape Grammar system can read Esri-Oracle format datasets directly, and it operates as a top-bottom generation tree: it generates complex components from simple Shapefiles polygons/poly-lines/points whereas each branch and leaf of the generation tree cannot interact with others. It is different than main-stream shape grammars like Grasshopper in Rhinoceros 3D and Dynamo in Autodesk Revit. Relevant applicationsTraditionally, building a 3D urban environment is very time-consuming resulted from numerous buildings and details of a city. Designers used CAD software to create shapes one by one, and researchers analyzed cities by computing 2D information in GIS (GIS only supports limited 3D shape generation like extrusion.) CityEngine's Procedural Modeling system makes it possible to generate complex 3D models via information massively, bringing a large number of relevant applications. It not only enhances the workflow of urban design/study/planning and merges to a new field of study called Geodesign (means using geospatial information to design a city), but also lowers the threshold of making city environments in game and movie industry. GeodesignDiscussions on geodesign often mention the use of Esri CityEngine,[9] although it is not an analytical tool like GIS. As a crucial tool to enhance 3D shape generation in ArcGIS, Esri CityEngine is the critical product to improve the applicability of GeoDesign, using geospatial information to design or analyze a city.[10] Urban Design and PlanningGarsdale Design were early pioneers of Esri CityEngine in the creation of city master plans in Iraq pre-2013.[11] using it to not just model existing historic areas but also model future plans.[12] Larger companies like Foster+Partners and HOK Architects have also used CityEngine in their sizable urban planning projects. Before using that, it took them numerous work hours on creating interactive visualizations of hundred thousands of buildings. With CityEngine, the designers and clients of projects can communicate via craft fluid, data-rich, and real-time rendered experiences.[13]Urban StudyDue to its dominant feature in building informative city models, urban researchers are using CityEngine to compare land-use planning schemes, starting from the densest global cities such as Hong Kong and Seoul.[14] When urban designers/planners enjoy the quantitive analyst, environmental scientists also like the instant 3D model generation in CityEngine, leading to more convenient informative research out of the time-consumption on creating a city from each building.[15][16] Game DevelopmentTriple-A Games require detailed 3D environments to assign interactive scripts, causing CityEngine's participation in the creation of game scene.[17] Currently, game scenes become larger than that of old video games ten years ago. Large sandbox or open-world games such as GTA series or Assassin Creeds series need millions of distinguished 3D buildings in their virtual world. Designing these games with instantly testing and editing can reduce workloads and increase the rationality of a game scene in the gameplay.[18] Movie IndustryZootopia, which won the 2016 Academy Award for Best Animated Feature Film, used CityEngine to establish an impressive metropolis where humans don’t exist. From giraffes to shrews, animals own diverse scales in the system of transportation, houses, and amenities. To build up a multi-scaling city, the designers used CityEngine due to its rule-based system. Before Zootopia (also known as Zootroplis in countries outside the USA), CityEngine was also used to create [https://gizmodo.com/a-tour-of-san-fransokyo-the-hybrid-city-disney-built-f-1642066794 the Japanese-style city]—San Fransokyo—in Big Hero 6 .[19]Publications{{Refbegin}}
See also
References1. ^{{Cite journal|last=Nae-Young|first=Choei|date=April 1, 2016|title=Procedural Modeling of a Residential Site Using the Interoperability between the GIS and CityEngine|url=https://eds.a.ebscohost.com/eds/detail/detail?vid=3&sid=15f46927-cb0a-4a18-b27b-987a24d250a4%40sessionmgr4009&bdata=JnNpdGU9ZWRzLWxpdmUmc2NvcGU9c2l0ZQ%3d%3d#AN=115375340&db=aci|journal=GSTF Journal of Engineering Technology|volume=3| issue = 4|pages=4–10|via=Applied Science & Technology Source}} 2. ^{{Cite news|url=https://blogs.esri.com/esri/arcgis/2016/09/22/bim-gis-integration-with-ifc/|title=BIM-GIS Integration with IFC|last=|first=|date=|work=|access-date=}} 3. ^{{Cite web|url=https://www.linkedin.com/company/procedural-inc./|title=Procedural Inc. LinkedIn Home Page|last=|first=|date=|website=linkedin|access-date=}}{{dead link|date=December 2018|bot=medic}}{{cbignore|bot=medic}} 4. ^[https://github.com/felix11/OpenPCG/blob/master/literature/procedural_modeling_of_cities__siggraph2001.pdf Procedural Modeling of Cities - Yoav Parish and Pascal Mueller (PDF)] 5. ^{{Cite web|url=http://www.esri.com/software/cityengine/buy|title=Purchase CityEngine|last=|first=|date=|website=esri.com|access-date=}} 6. ^{{Cite web|url=http://desktop.arcgis.com/en/cityengine/latest/get-started/cityengine-2016-release-notes.htm|title=CityEngine 2016.0 release notes—Esri CityEngine {{!}} ArcGIS Desktop|website=desktop.arcgis.com|access-date=2017-11-06}} 7. ^{{Cite web|url=http://cehelp.esri.com/help/index.jsp?topic=/com.procedural.cityengine.help/html/manual/export/vr360/export_formats_3vr.html|title=360 VR Experience Helper page|last=|first=|date=|website=Esri.com|access-date=}} 8. ^New York example 9. ^http://video.esri.com/watch/2116/the-instant-citygeodesign-and-urban-planning 10. ^{{Cite web|url=http://www.esri.com/products/arcgis-capabilities/geodesign/overview|title=GeoDesign Overview {{!}} Esri|last=|first=|date=|website=Esri.com|archive-url=https://web.archive.org/web/20150226015417/http://www.esri.com/products/arcgis-capabilities/geodesign/overview|archive-date=2015-02-26|dead-url=yes|access-date=}} 11. ^{{Cite news|url=https://www.theguardian.com/cities/2014/aug/26/yorkshire-dales-family-designing-cities-in-iraq|title=The Yorkshire Dales family who are designing entire cities in Iraq|last=Jeffries |first=Stuart |date=2014-08-26|newspaper=The Guardian|access-date=}} 12. ^{{Cite web|url=http://www.esri.com/esri-news/arcnews/spring13articles/cityengine-creates-new-solutions-for-historic-cities|title= CityEngine Creates New Solutions for Historic Cities|last= |first= |date=|website=esri.com|access-date=}} 13. ^{{Cite web|url=http://desktop.arcgis.com/en/cityengine/latest/get-started/cityengine-whats-new.htm|title=Visibility Analysis tools for planners|last=Zoog|first=Christopher|date=|website=Esri.com|access-date=}} 14. ^{{Cite journal|last=Guo|first=Jian|date=July 2017|title=A study of plot ratio/building height restrictions in high density cities using 3D spatial analysis technology: A case in Hong Kong|url=http://www.sciencedirect.com/science/article/pii/S0197397515303465?|journal=Habitat International|volume=65|pages=13–31|via=Elsevier Science Direct|doi=10.1016/j.habitatint.2017.04.012|hdl=10397/69923}} 15. ^{{Cite journal|last=Choei|first=Nae-Young|date=April 2016|title=Procedural Modeling of a Residential Site Using the Interoperability between the GIS and CityEngine: An Adaptation of the Radburn Type Cul-de-sac Roadsystem and Housing|url=https://eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=5&sid=f1cb27b0-bfcf-491a-8034-9f7e850331df%40pdc-v-sessmgr01|journal=Journal of Engineering Technology|volume=3|pages=4|via=GSTF}} 16. ^{{Cite journal|last=Zhu|first=Qing|date=July 2017|title=Robust point cloud classification based on multi-level semantic relationships for urban scenes|url=http://www.sciencedirect.com/science/article/pii/S0924271616305445?|journal=Photogrammetry and Remote Sensing|volume=129|pages=86–102|via=Elsevier Science Direct|doi=10.1016/j.isprsjprs.2017.04.022}} 17. ^{{Cite journal|last=Klein|first=Bernhard|date=2016|title=Managing the Scalability of Visual Exploration Using Game Engines to Analyse UHI Scenarios|url=http://www.sciencedirect.com/science/article/pii/S1877705816332350?|journal=Procedia Engineering|volume=169|pages=272–279|via=Elsevier Science Direct|doi=10.1016/j.proeng.2016.10.033}} 18. ^{{Cite book|title=Literary Mapping in the Digital Age|last=Cooper|first=David|publisher=Routledge|date=May 20, 2016|isbn=|location=|pages=}} 19. ^{{Cite journal|last=Tracy|first=Cozzens|date=July 10, 2017|title=Esri UC: How CityEngine powered Disney's Zootopia|url=http://gpsworld.com/esri-uc-how-cityengine-powered-disneys-zootopia/|journal=GPS World|volume=|pages=|via=}} External links{{Official website}}{{Esri Software}}{{DEFAULTSORT:Cityengine}} 5 : GIS software|Urban planning|Computer graphics|Esri software|Proprietary commercial software for Linux |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。