释义 |
- See also
- References
In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: , where [A, B] = AB − BA is the commutator of A and B and (A, B, C) = (AB)C – A(BC) is the associator of A, B and C. In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra. See also- Valya algebra
- Malcev algebra
- Alternative algebra
References- A. Elduque, H. C. Myung Mutations of alternative algebras, Kluwer Academic Publishers, Boston, 1994, {{ISBN|0-7923-2735-7}}
- {{springer|id=M/m062170|author=V.T. Filippov|title=Mal'tsev algebra}}
- M.V. Karasev, V.P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization. American Mathematical Society, Providence, 1993.
- A.G. Kurosh, Lectures on general algebra. Translated from the Russian edition (Moscow, 1960) by K. A. Hirsch. Chelsea, New York, 1963. 335 pp. {{ISBN|0-8284-0168-3}} {{ISBN|978-0-8284-0168-5}}
- A.G. Kurosh, General algebra. Lectures for the academic year 1969/70. Nauka, Moscow,1974. (In Russian)
- A.I. Mal'tsev, Algebraic systems. Springer, 1973. (Translated from Russian)
- A.I. Mal'tsev, Analytic loops. Mat. Sb., 36 : 3 (1955) pp. 569–576 (In Russian)
- {{cite book | first = R.D. | last = Schafer | title = An Introduction to Nonassociative Algebras | publisher = Dover Publications | location = New York | year = 1995 | isbn = 0-486-68813-5}}
- V.E. Tarasov, "Quantum dissipative systems: IV. Analogues of Lie algebras and groups" Theoretical and Mathematical Physics. Vol.110. No.2. (1997) pp.168-178.
- V.E. Tarasov [https://books.google.com/books?id=pHK11tfdE3QC&dq=V.E.+Tarasov+Quantum+Mechanics+of+Non-Hamiltonian+and+Dissipative+Systems.&printsec=frontcover&source=bl&ots=qDERzjAJd9&sig=U8V7RUVd1SW8mx4GzE1T-2canhA&hl=ru&ei=pkvkSeycINiEsAbloKSfCw&sa=X&oi=book_result&ct=result&resnum=1 Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier Science, Amsterdam, Boston, London, New York, 2008.] {{ISBN|0-444-53091-6}} {{ISBN|9780444530912}}
- {{eom|id=A/a012090|first=K.A.|last= Zhevlakov|title=Alternative rings and algebras}}
1 : Non-associative algebras |