词条 | Comparison of general and generalized linear models | ||||||||||||||||||||||||||||||||
释义 |
The general linear model (GLM)[1][2] and the generalized linear model (GLiM)[3][4] are two commonly used families of statistical methods to relate some number of continuous and/or categorical predictors to a single outcome variable. The main difference between the two approaches is that the GLM strictly assumes that the residuals will follow a conditionally normal distribution[2], while the GLiM loosens this assumption and allows for a variety of other distributions from the exponential family for the residuals[3]. Of note, the GLM is a special case of the GLiM in which the distribution of the residuals follow a conditionally normal distribution. The distribution of the residuals largely depends on the type and distribution of the outcome variable; different types of outcome variables lead to the variety of models within the GLiM family. Commonly used models in the GLiM family include binary logistic regression[5] for binary or dichotomous outcomes, Poisson regression[6] for count outcomes, and linear regression for continuous, normally distributed outcomes. This means that GLiM may be spoken of as a general family of statistical models or as specific models for specific outcome types.
1. ^Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (Vol. 4, p. 318). Chicago: Irwin. 2. ^1 Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. 3. ^1 {{Citation|last=McCullagh|first=P.|title=An outline of generalized linear models|date=1989|work=Generalized Linear Models|pages=21–47|publisher=Springer US|isbn=9780412317606|last2=Nelder|first2=J. A.|doi=10.1007/978-1-4899-3242-6_2}} 4. ^Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications. 5. ^Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons. 6. ^Gardner, W., Mulvey, E. P., & Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychological bulletin, 118(3), 392. 7. ^{{cite book|title=Generalized Linear Models, Second Edition|last=McCullagh|first=Peter|author2=Nelder, John|publisher=Boca Raton: Chapman and Hall/CRC|year=1989|isbn=978-0-412-31760-6|ref=McCullagh1989|authorlink=Peter McCullagh|authorlink2=John Nelder}} 8. ^LinearModelFit, Wolfram Language Documentation Center. 9. ^GeneralizedLinearModelFit, Wolfram Language Documentation Center. 10. ^ls, EViews Help. 11. ^glm, EViews Help. References
1 : Generalized linear models |
||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。