请输入您要查询的百科知识:

 

词条 Cubic threefold
释义

  1. Examples

  2. References

In algebraic geometry, a cubic threefold is a hypersurface of degree 3 in 4-dimensional projective space. Cubic threefolds are all unirational, but {{harvtxt|Clemens|Griffiths|1972}} used intermediate Jacobians to show that non-singular cubic threefolds are not rational. The space of lines on a non-singular cubic 3-fold is a Fano surface.

Examples

  • Koras–Russell cubic threefold
  • Klein cubic threefold
  • Segre cubic

References

  • {{Citation | last1=Bombieri | first1=Enrico | author1-link=Enrico Bombieri | last2=Swinnerton-Dyer | first2=H. P. F. | author2-link=Peter Swinnerton-Dyer | title=On the local zeta function of a cubic threefold | url=http://www.numdam.org/item?id=ASNSP_1967_3_21_1_1_0 | mr=0212019 | year=1967 | journal=Ann. Scuola Norm. Sup. Pisa (3) | volume=21 | pages=1–29}}
  • {{Citation | last1=Clemens | first1=C. Herbert | last2=Griffiths | first2=Phillip A. | title=The intermediate Jacobian of the cubic threefold | jstor=1970801 | mr=0302652 | year=1972 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=95 | issue=2 | pages=281–356 | doi=10.2307/1970801| citeseerx=10.1.1.401.4550 }}
  • {{Citation | last1=Murre | first1=J. P. | title=Algebraic equivalence modulo rational equivalence on a cubic threefold | url=http://www.numdam.org/item?id=CM_1972__25_2_161_0 | mr=0352088 | year=1972 | journal=Compositio Mathematica | issn=0010-437X | volume=25 | pages=161–206}}

2 : Algebraic varieties|3-folds

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 13:35:41