释义 |
- Orthologs
- Post-translational modification
- Regulation
- References
- External links
- Further reading
{{Infobox_gene}}DGLUCY (D-glutamate cyclase) is a protein that in humans is encoded by the DGLUCY gene.[1] Orthologs {{Original research|section|date=January 2011}}The human gene, DGLUCY, is highly conserved in mammals and birds.[2] Orthologs gathered from BLAST and BLAT searches reveal that the human DGLUCY mRNA sequence is conserved with a sequence identity of 98% in chimpanzees, 88% in mice, and 81% in platypus and chicken.[3][4] The following table contains a list orthologs that were gathered from BLAST searches. Sequence alignments were performed using blastn to derive sequence identity, score, and E-values between the human c14orf159 variant 1 mRNA and its orthologs. Genus and species | Common name | NCBI accession number | Sequence length (bp) | Sequence identity | Score | E-value |
---|
Homo sapiens | Human | NM_001102366 | 3164 | 100% | 0 | Pan troglodytes | Chimpanzee | XM_510121 | 2974 | 98% | 4281 | 0 | Mus musculus | Mouse | NM_145448 | 3231 | 88% | 495 | 0 | Ornithorhynchus anatinus | Platypus | XM_00154336.1 | 1962 | 81% | 217 | 0 | Gallus gallus | Chicken | XM_421319 | 3389 | 81 | 50 | 0 Human C14orf159 Orthologs-mRNA |
The protein that the human gene DGLUCY encodes has been found to be highly conserved among mammals, birds, amphibians, fish, tunicates, cnidarians, and echinoderms. However, no protein orthologs have been found in nematodes, arthropods, fungi, protists, plants, bacteria, or archea. Fungi and bacteria contain the DUF1445 conserved domain which is found in human c14orf159 and its orthologs. BLAST and BLAT searches have been utilized to find orthologs to the c14orf159 protein. The following table lists protein orthologs for the human protein with sequence identity, sequence similarity, scores, and E-values derived from blastp sequence comparisons.[5] Genus and species | Common name | NCBI accession number | Sequence length-amino acids | Sequence identity | Sequence similarity | Score | E-value |
---|
Homo sapiens | Human | NP_001095839.1 | 564 | 100% | 100% | 0 | Pan troglodytes | Chimpanzee | XP_510121.2 | 724 | 557/621 (89%) | 561/621 (90%) | 1109 | 0 | Ailuropoda melanoleuca | Panda | EFB15996.1 | 585 | 413/585 (70%) | 461/585 (78%) | 824 | 0 | Rattus norvegicus | Rat | XP_343096.2 | 618 | 423/618 (68%) | 470/618 (76%) | 774 | 0 | Mus musculus | Mouse | NP_663423.2 | 617 | 414/623 (66%) | 468/621 (75%) | 796 | 0 | Equus caballus | Horse | XP_001916913.1 | 581 | 390/585 (66%) | 433/585 (74%) | 728 | 6E-115 | Ornithorhynchus anatinus | Platypus | XP_001514386.1 | 653 | 358/628 (57%) | 443/628 (70%) | 696 | 0 | Gallus gallus | Chicken | XP_421319.2 | 617 | 330/614 (53%) | 414/614 (67%) | 630 | 0 | Xenopus tropicalis | Western clawed frog | CAJ82045.1 | 616 | 302/611 (49%) | 399/611 (65%) | 582 | 1E-170 | Danio rerio | Zebrafish | AAI244131.1 | 621 | 284/607 (46%) | 386/607 (63%) | 530 | 6E-155 | Branchiostoma floridae | Lancelet | XP_002612376.1 | 615 | 237/611 (38%) | 334/611 (54%) | 397 | 6E-115 | Ciona intestinalis | Vase tunicate | XP_001173256 | 486 | 161/501 (32%) | 241/501 (48%) | 244 | 5E-69 | Strongylocentrotus purpuratus | California purple sea urchin | XP_782739.1 | 631 | 9/33 (27%) | 15/33 (45%) | 320 | 5E-87 | Nematostella vectensis | Starlet sea anemone | XP_001637867 | 529 | 134/501 (26%) | 211/501 (42%) | 120 | 1E-31 | Human C14orf159 Orthologs-protein
Post-translational modification The protein product of the DGLUCY gene is predicted[1] and was found[6][7] to be translocated to mitochondrion. Post-translational modifications are predicted for the protein DGLUCY. All predicted sites in human DGLUCY were compared to orthologs using multiple sequence alignments to determine likelihood of modification.[8][9][10][11] [12] Regulation Estrogen receptor alpha, in the presence of estradiol, binds to the DGLUCY gene and likely regulates its expression.[13]References1. ^1 {{cite web | title = Entrez Gene: C14orf159 chromosome 14 open reading frame 159| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80017| accessdate = }} 2. ^BLAST. NCBI. accessed 19 April 2010. http://blast.ncbi.nlm.nih.gov/Blast.cgi 3. ^UCSC Genome Browser website, BLAT. accessed 10 April 2010. 4. ^BLAST. NCBI. accessed 19 April 2010. 5. ^Blastp. NCBI. http://blast.ncbi.nlm.nih.gov/Blast.cgi 6. ^{{cite web | url = http://www.dkfz.de/LIFEdb/(2ij04255g3tubn45u1j3kl45)/Table.aspx | title = RZPD CloneID DKFZp686J0759 | vauthors = Mehrle A, Rosenfelder H | date = | format = | work = LifeDB: Database for Localization, Interaction, Functional assays and Expression of Proteins| publisher = German Cancer Research Center | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = }} 7. ^{{cite journal | vauthors = Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A | title = From ORFeome to Biology: A Functional Genomics Pipeline | journal = Genome Res. | volume = 14 | issue = 10B | pages = 2136–44 |date=October 2004 | pmid = 15489336 | pmc = 528930 | doi = 10.1101/gr.2576704 | url = }} 8. ^Prediction of glycosylation across the human proteome and the correlation to protein function. Gupta, R. and S. Brunak. Pacific Symposium on Biocomputing, 7:310-322, 2002 . 9. ^Locating proteins in the cell using TargetP, SignalP, and related tools Olof Emanuelsson, Søren Brunak, Gunnar von Heijne, Henrik Nielsen Nature Protocols 2, 953-971 (2007) http://www.cbs.dtu.dk/services/SignalP/. 10. ^Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. R. Gupta, E. Jung, A.A. Gooley, K.L. Williams, S. Brunak and J. Hansen. Glycobiology: 9(10):1009-22, 1999 http://www.cbs.dtu.dk/services/DictyOGlyc/. 11. ^Analysis and prediction of mammalian protein glycation. Morten Bo Johansen, Lars Kiemer and Søren Brunak Glycobiology, 16:844-853, 2006 http://www.cbs.dtu.dk/services/NetGlycate/. 12. ^Sulfinator. Expasy tools. 2010. http://expasy.org/tools/sulfinator/. 13. ^{{cite journal | vauthors = Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM | title = Estrogen receptor α regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence | journal = Mol. Cell. Endocrinol. | volume = 267 | issue = 1–2 | pages = 106–15 |date=March 2007 | pmid = 17275994 | pmc = 1933484 | doi = 10.1016/j.mce.2007.01.001 | url = }}
External links- {{UCSC gene info|C14orf159}}
Further reading{{refbegin | 2}}- {{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
- {{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}}
- {{cite journal | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }}
- {{cite journal | vauthors=Wiemann S, Weil B, Wellenreuther R |title=Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R | pmc=311072 |display-authors=etal}}
- {{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
- {{cite journal | vauthors=Clark HF, Gurney AL, Abaya E |title=The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 |display-authors=etal}}
- {{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
- {{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
- {{cite journal | vauthors=Cheng J, Kapranov P, Drenkow J |title=Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution |journal=Science |volume=308 |issue= 5725 |pages= 1149–54 |year= 2005 |pmid= 15790807 |doi= 10.1126/science.1108625 |display-authors=etal}}
- {{cite journal | vauthors=Kimura K, Wakamatsu A, Suzuki Y |title=Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 |display-authors=etal}}
- {{cite journal | vauthors=Mehrle A, Rosenfelder H, Schupp I |title=The LIFEdb database in 2006 |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 |display-authors=etal}}
{{refend}} 1 : Human proteins |