请输入您要查询的百科知识:

 

词条 Dimensional operator
释义

  1. Definition

  2. Examples

  3. References

In mathematics, specifically set theory, a dimensional operator on a set E is a function from the subsets of E to the subsets of E.

Definition

If the power set of E is denoted P(E) then a dimensional operator on E is a map

that satisfies the following properties for S,TP(E):

  1. Sd(S);
  2. d(S) = d(d(S)) (d is idempotent);
  3. if ST then d(S) ⊆ d(T);
  4. if Ω is the set of finite subsets of S then d(S) = ∪A∈Ωd(A);
  5. if xE and yd(S ∪ {x}) \\ d(S), then xd(S ∪ {y}).

The final property is known as the exchange axiom.[1]

Examples

  1. For any set E the identity map on P(E) is a dimensional operator.
  2. The map which takes any subset S of E to E itself is a dimensional operator on E.

References

1. ^Julio R. Bastida, Field Extensions and Galois Theory, Addison-Wesley Publishing Company, 1984, pp. 212–213.

1 : Set theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 11:05:30