词条 | Discrete dipole approximation codes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
This article contains list of discrete dipole approximation codes and their applications. The discrete dipole approximation (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties. The DDA can be thought either as rigorous discretization of the volume-integral equation for the electric field[1] or as an approximation of the continuum target by a finite array of polarizable points[2]. The latter points acquire dipole moments in response to the local electric field and interact with one another via their electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation/method. It is closely related to (volumetric) method of moments, digitized Green's function, Green's dyadic method/formulation, or volume integral equation method. ClassificationThe compilation contains information about the discrete dipole approximation, relevant links, and their applications. There are reviews [1][2]as well as published comparison of existing codes. [3] All of the codes apply to arbitrary-shaped inhomogeneous nonmagnetic particles and particle systems in free space or homogeneous dielectric host medium (handling of substrate is discussed separately). The calculated quantities typically include angle-resolved scattered fields (or the Mueller matrices), integral cross-sections (extinction, absorption, and scattering), and internal fields. Therefore, the description of the codes below focuses on their unique features, including other computed quantities and computational optimizations/parallelization. General-purpose open-source DDA codesAll of the following use regular grids (cubic or rectangular cuboid), Krylov-subspace iterative methods to solve large system of linear equations, and FFT-acceleration of the matrix-vector products. It results in almost linear computational complexity in number of dipoles (discretization voxels) for both time and memory.[2] Importantly, the source code is freely available.
Specialized DDA codesThese list include codes that do not qualify for the previous section. The reasons include the following: source code is not available (then the update date is approximate), FFT acceleration is absent or reduced, the code focuses on specific applications, not allowing easy calculation of standard scattering quantities.
Relevant scattering codes
See also
References1. ^1 2 {{Cite journal|doi = 10.1364/JOSAA.11.001491|author1=B. T. Draine |author2=P. J. Flatau|title = Discrete dipole approximation for scattering calculations|journal = J. Opt. Soc. Am. A|volume = 11|issue = 4|pages = 1491–1499|year = 1994|bibcode = 1994JOSAA..11.1491D }} 2. ^1 2 {{Cite journal|doi = 10.1016/j.jqsrt.2007.01.034|volume = 106|issue = 1–3|pages = 558–589|author1=M. A. Yurkin |author2=A. G. Hoekstra |title = The discrete dipole approximation: an overview and recent developments|journal = J. Quant. Spectrosc. Radiat. Transfer|year = 2007|url = http://sites.google.com/site/yurkin/publications/papers/YurkinandHoekstra-2007-Thediscretedipoleapproximation%2Canoverviewandrecentdevelopments.pdf|bibcode = 2007JQSRT.106..558Y |arxiv = 0704.0038 }} 3. ^{{Cite journal|doi = 10.1016/j.jqsrt.2007.01.026|volume = 106|issue = 1–3|pages = 417–436|author1=A. Penttila |author2=E. Zubko |author3=K. Lumme |author4=K. Muinonen |author5=M. A. Yurkin |author6=B. T. Draine |author7=J. Rahola |author8=A. G. Hoekstra |author9=Y. Shkuratov|title = Comparison between discrete dipole implementations and exact techniques|journal = J. Quant. Spectrosc. Radiat. Transfer|year = 2007|url = http://sites.google.com/site/yurkin/publications/papers/Penttilaetal-2007-Comparisonbetweendiscretedipoleimplementations.pdf|bibcode = 2007JQSRT.106..417P }} 4. ^{{Cite journal|doi = 10.1364/JOSAA.25.002693|volume = 25|issue = 11|pages = 2693–2703|author1=B. T. Draine |author2=P. J. Flatau|title = Discrete-dipole approximation for periodic targets: theory and tests|journal = J. Opt. Soc. Am. A|year = 2008|arxiv = 0809.0338|bibcode = 2008JOSAA..25.2693D }} 5. ^{{Cite journal|volume = 3|pages = 66–70|author = V. Y. Choliy|title = The discrete dipole approximation code DDscat.C++: features, limitations and plans|journal = Adv. Astron. Space Phys.|year = 2013|url = http://aasp.kiev.ua/index.php?text=v3-066-070-Choliy|bibcode = 2013AASP....3...66C }} 6. ^{{Cite journal|doi = 10.1016/j.jqsrt.2007.01.033|volume = 106|issue = 1–3|pages = 546–557|author1=M. A. Yurkin |author2=V. P. Maltsev |author3=A. G. Hoekstra | title = The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength|journal = J. Quant. Spectrosc. Radiat. Transfer|year = 2007|url = http://sites.google.com/site/yurkin/publications/papers/Yurkinetal-2007-Thediscretedipoleapproximationforsimulationoflightscattering.pdf|bibcode = 2007JQSRT.106..546Y |arxiv = 0704.0037 }} 7. ^{{Cite journal|doi = 10.1016/j.jqsrt.2011.01.031|volume = 112|issue = 13|pages = 2234–2247|author1=M. A. Yurkin |author2=A. G. Hoekstra | title = The discrete-dipole-approximation code ADDA: capabilities and known limitations|journal = J. Quant. Spectrosc. Radiat. Transfer|year = 2011|url = https://sites.google.com/site/yurkin/publications/papers/YurkinandHoekstra-2011-Thediscrete-dipole-approximationcodeADDAcapab.pdf|bibcode = 2011JQSRT.112.2234Y }} 8. ^{{Cite journal|doi = 10.1177/1094342008097914|volume = 23|issue = 1|pages = 42–61|author1=J. McDonald |author2=A. Golden |author3=G. Jennings |title = OpenDDA: a novel high-performance computational framework for the discrete dipole approximation|journal = Int. J. High Perf. Comp. Appl.|year = 2009|arxiv = 0908.0863|bibcode = 2009arXiv0908.0863M}} 9. ^{{Cite thesis|author = J. McDonald|type = PhD|title = OpenDDA - a novel high-performance computational framework for the discrete dipole approximation|publisher = National University of Ireland|place = Galway|year = 2007|url = http://www.opendda.org/assets/docs/thesis_JMcD_OpenDDA.pdf|deadurl = yes|archiveurl = https://web.archive.org/web/20110727150256/http://www.opendda.org/assets/docs/thesis_JMcD_OpenDDA.pdf|archivedate = 2011-07-27}} 10. ^{{Cite journal|doi = 10.2351/1.4719936|volume = 24|issue = 4|pages = 042010|author1=M. Zimmermann |author2=A. Tausendfreund |author3=S. Patzelt |author4=G. Goch |author5=S. Kieß |author6=M. Z. Shaikh |author7=M. Gregoire |author8=S. Simon |title = In-process measuring procedure for sub-100 nm structures|journal = J. Laser Appl.|year = 2012|bibcode = 2012JLasA..24d2010Z }} 11. ^{{Cite journal|doi = 10.1364/OE.19.015908|pmid = 21934954|volume = 19|issue = 17|pages = 15908–15918|author1=W. E. I. Sha |author2=W. C. H. Choy |author3=Y. P. Chen |author4=W. C. Chew |title = Optical design of organic solar cell with hybrid plasmonic system|journal = Opt. Express|year = 2011|bibcode = 2011OExpr..1915908S}} 12. ^{{Cite journal|doi = 10.1364/JOSAA.14.003026|volume = 14|issue = 11|pages = 3026–3036|author1=R. Schmehl |author2=B. M. Nebeker |author3=E. D. Hirleman |title = Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique|journal = J. Opt. Soc. Am. A|year = 1997|bibcode = 1997JOSAA..14.3026S }} 13. ^{{Cite thesis|author = B. M. Nebeker|type = PhD|title = Modeling of light scattering from features above and below surfaces using the discrete-dipole approximation|publisher = Arizona State University|place = Tempe, AZ, USA|year = 1998}} 14. ^{{Cite journal|doi = 10.1364/JOSAA.25.001728|volume = 25|issue = 7|pages = 1728–1736|author1 = E. Bae| author2 = H. Zhang| author3 = E. D. Hirleman|title = Application of the discrete dipole approximation for dipoles embedded in film|journal = J. Opt. Soc. Am. A|year = 2008 |bibcode = 2008JOSAA..25.1728B}} 15. ^{{Cite journal|doi = 10.1364/JOSAA.19.000881|volume = 19|issue = 5|pages = 881–893|author = D. W. Mackowski|title = Discrete dipole moment method for calculation of the T matrix for nonspherical particles|journal = J. Opt. Soc. Am. A|year = 2002|bibcode = 2002JOSAA..19..881M }} 16. ^{{Cite thesis|author = M. D. McMahon|type = PhD|title = Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles|publisher = Vanderbilt University|place = Nashville, TN, USA|year = 2006|url = http://etd.library.vanderbilt.edu/ETD-db/available/etd-09012006-153819/unrestricted/MatthewMcMahonDissertation.pdf}} 17. ^{{Cite journal|doi = 10.1016/j.jqsrt.2011.03.012|volume = 112|issue = 11|pages = 1711–1725|author = V. L. Y. Loke |author2 = P. M. Mengüç |author3 = Timo A. Nieminen|title = Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB|journal = J. Quant. Spectrosc. Radiat. Transfer|year = 2011|bibcode = 2011JQSRT.112.1711L }} 18. ^{{Cite journal|doi = 10.1021/nn302980u|pmid = 22849410|volume = 6|issue = 8|pages = 7497–7504|author1 = N. W. Bigelow |author2 = A. Vaschillo |author3 = V. Iberi |author4 = J. P. Camden| author5 = D. J. Masiello|title = Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods|journal = ACS Nano|year = 2012}} 19. ^{{Cite journal|doi = 10.1016/j.ultramic.2010.01.013|volume = 110|issue = 8|pages = 1075–1080|author1 = N. Geuquet |author2 = L. Henrard|title = EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation|journal = Ultramicroscopy|year= 2010}} 20. ^{{Cite journal|doi = 10.1103/PhysRevE.91.063307|pmid = 26172822|volume = 91|issue = 6|pages = 063307|author1 = S. Edalatpour |author2 = M. Čuma |author3 = T. Trueax |author4 = R. Backman |author5 = M. Francoeur|title = Convergence analysis of the thermal discrete dipole approximation|journal = Phys. Rev. E|year = 2015|bibcode = 2015PhRvE..91f3307E|arxiv = 1502.02186}} External links
4 : Science-related lists|Computational science|Scattering, absorption and radiative transfer codes|Scattering |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。