词条 | Distortion problem |
释义 |
In functional analysis, a branch of mathematics, the distortion problem is to determine by how much one can distort the unit sphere in a given Banach space using an equivalent norm. Specifically, a Banach space X is called λ-distortable if there exists an equivalent norm |x| on X such that, for all infinite-dimensional subspaces Y in X, (see distortion (mathematics)). Note that every Banach space is trivially 1-distortable. A Banach space is called distortable if it is λ-distortable for some λ > 1 and it is called arbitrarily distortable if it is λ-distortable for any λ. Distortability first emerged as an important property of Banach spaces in the 1960s, where it was studied by {{harvtxt|James|1964}} and {{harvtxt|Milman|1971}}. James proved that c0 and ℓ1 are not distortable. Milman showed that if X is a Banach space that does not contain an isomorphic copy of c0 or ℓp for some {{nowrap|1 ≤ p < ∞}} (see sequence space), then some infinite-dimensional subspace of X is distortable. So the distortion problem is now primarily of interest on the spaces ℓp, all of which are separable and uniform convex, for {{nowrap|1 < p < ∞}}. In separable and uniform convex spaces, distortability is easily seen to be equivalent to the ostensibly more general question of whether or not every real-valued Lipschitz function ƒ defined on the sphere in X stabilizes on the sphere of an infinite dimensional subspace, i.e., whether there is a real number a ∈ R so that for every δ > 0 there is an infinite dimensional subspace Y of X, so that |a − ƒ(y)| < δ, for all y ∈ Y, with ||y|| = 1. But it follows from the result of {{harvtxt|Odell|Schlumprecht|1994}} that on ℓ1 there are Lipschitz functions which do not stabilize, although this space is not distortable by {{harvtxt|James |1964}}. In a separable Hilbert space, the distortion problem is equivalent to the question of whether there exist subsets of the unit sphere separated by a positive distance and yet intersect every infinite-dimensional closed subspace. Unlike many properties of Banach spaces, the distortion problem seems to be as difficult on Hilbert spaces as on other Banach spaces. On a separable Hilbert space, and for the other ℓp-spaces, 1 < p < ∞, the distortion problem was solved affirmatively by {{harvtxt|Odell|Schlumprecht|1994}}, who showed that ℓ2 is arbitrarily distortable, using the first known arbitrarily distortable space constructed by {{harvtxt|Schlumprecht|1991}}.See also
References
1 : Functional analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。