词条 | Essential dimension |
释义 |
In mathematics, essential dimension is an invariant defined for certain algebraic structures such as algebraic groups and quadratic forms. It was introduced by J. Buhler and Z. Reichstein [1] and in its most generality defined by A. Merkurjev. [2]Basically, essential dimension measures the complexity of algebraic structures via their fields of definition. For example, a quadratic form q : V → K over a field K, where V is a K-vector space, is said to be defined over a subfield L of K if there exists a K-basis e1,...,en of V such that q can be expressed in the form with all coefficients aij belonging to L. If K has characteristic different from 2, every quadratic form is diagonalizable. Therefore, q has a field of definition generated by n elements. Technically, one always works over a (fixed) base field k and the fields K and L in consideration are supposed to contain k. The essential dimension of q is then defined as the least transcendence degree over k of a subfield L of K over which q is defined. Formal definitionFix an arbitrary field k and let Fields/k denote the category of finitely generated field extensions of k with inclusions as morphisms. Consider a (covariant) functor F : Fields/k → Set. For a field extension K/k and an element a of F(K/k) a field of definition of a is an intermediate field K/L/k such that a is contained in the image of the map F(L/k) → F(K/k) induced by the inclusion of L in K. The essential dimension of a, denoted by ed(a), is the least transcendence degree (over k) of a field of definition for a. The essential dimension of the functor F, denoted by ed(F), is the supremum of ed(a) taken over all elements a of F(K/k) and objects K/k of Fields/k. Examples
Known results
References1. ^{{cite journal|title=On the essential dimension of a finite group|journal=Compositio Mathematica|year=1997|first=J.|last=Buhler|author2=Reichstein, Z. |volume=106|issue=2|pages=159–179|id= |url=|format=|doi=10.1023/A:1000144403695 }} 2. ^{{cite journal|title=Essential Dimension: a Functorial Point of View (after A. Merkurjev)|journal=Documenta Mathematica|year=2003|first=G.|last=Berhuy|author2=Favi, G. |volume=8|issue=|pages=279–330 (electronic)|id= |format=}} 1 : Algebraic structures |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。