请输入您要查询的百科知识:

 

词条 Inverse limit
释义

  1. Formal definition

      Algebraic objects    General definition  

  2. Examples

  3. Derived functors of the inverse limit

     Mittag-Leffler condition  Further results 

  4. Related concepts and generalizations

  5. See also

  6. Notes

  7. References

In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse limits can be defined in any category, and they are a special case of the concept of a limit in category theory.

Formal definition

Algebraic objects

We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let (I, ≤) be a directed poset (not all authors require I to be directed). Let (Ai)iI be a family of groups and suppose we have a family of homomorphisms fij: AjAi for all ij (note the order), called bonding maps, with the following properties:

  1. fii is the identity on Ai,
  2. fik = fij o fjk for all ijk.

Then the pair ((Ai)iI, (fij)ijI) is called an inverse system of groups and morphisms over I, and the morphisms fij are called the transition morphisms of the system.

We define the inverse limit of the inverse system ((Ai)iI, (fij)ijI) as a particular subgroup of the direct product of the Ai's:

The inverse limit A comes equipped with natural projections πi: AAi which pick out the ith component of the direct product for each i in I. The inverse limit and the natural projections satisfy a universal property described in the next section.

This same construction may be carried out if the Ai's are sets,[1] semigroups,[1] topological spaces,[1] rings, modules (over a fixed ring), algebras (over a fixed ring), etc., and the homomorphisms are morphisms in the corresponding category. The inverse limit will also belong to that category.

General definition

The inverse limit can be defined abstractly in an arbitrary category by means of a universal property. Let (Xi, fij) be an inverse system of objects and morphisms in a category C (same definition as above). The inverse limit of this system is an object X in C together with morphisms πi: XXi (called projections) satisfying πi = fij o πj for all ij. The pair (X, πi) must be universal in the sense that for any other such pair (Y, ψi) (i.e. ψi: YXi with ψi = fij o ψj for all ij) there exists a unique morphism u: YX such that the diagram

commutes for all ij, for which it suffices to show that ψi = πi o u for all i. The inverse limit is often denoted

with the inverse system (Xi, fij) being understood.

In some categories, the inverse limit of certain inverse systems does not exist. If it does, however, it is unique in a strong sense: given any two inverse limits X and X' of an inverse system, there exists a unique isomorphism X′ → X commuting with the projection maps.

We note that an inverse system in a category C admits an alternative description in terms of functors. Any partially ordered set I can be considered as a small category where the morphisms consist of arrows ij if and only if ij. An inverse system is then just a contravariant functor IC, and the inverse limit functor

is a covariant functor.

Examples

  • The ring of p-adic integers is the inverse limit of the rings Z/pnZ (see modular arithmetic) with the index set being the natural numbers with the usual order, and the morphisms being "take remainder". That is, one considers sequences of integers such that each element of the sequence "projects" down to the previous ones, namely, that whenever The natural topology on the p-adic integers is the one implied here, namely the product topology with cylinder sets as the open sets.
  • The ring of formal power series over a commutative ring R can be thought of as the inverse limit of the rings , indexed by the natural numbers as usually ordered, with the morphisms from to given by the natural projection.
  • Pro-finite groups are defined as inverse limits of (discrete) finite groups.
  • Let the index set I of an inverse system (Xi, fij) have a greatest element m. Then the natural projection πm: XXm is an isomorphism.
  • In the category of sets, every inverse system has an inverse limit, which can be constructed in an elementary manner as a subset of the product of the sets forming the inverse system. The inverse limit of any inverse system of non-empty finite sets is non-empty. This is a generalization of Kőnig's lemma in graph theory and may be proved with Tychonoff's theorem, viewing the finite sets as compact discrete spaces, and then applying the finite intersection property characterization of compactness.
  • In the category of topological spaces, every inverse system has an inverse limit. It is constructed by placing the initial topology on the underlying set-theoretic inverse limit. This is known as the limit topology.
    • The set of infinite strings is the inverse limit of the set of finite strings, and is thus endowed with the limit topology. As the original spaces are discrete, the limit space is totally disconnected. This is one way of realizing the p-adic numbers and the Cantor set (as infinite strings).

Derived functors of the inverse limit

For an abelian category C, the inverse limit functor

is left exact. If I is ordered (not simply partially ordered) and countable, and C is the category Ab of abelian groups, the Mittag-Leffler condition is a condition on the transition morphisms fij that ensures the exactness of . Specifically, Eilenberg constructed a functor

(pronounced "lim one") such that if (Ai, fij), (Bi, gij), and (Ci, hij) are three inverse systems of abelian groups, and

is a short exact sequence of inverse systems, then

is an exact sequence in Ab.

Mittag-Leffler condition

If the ranges of the morphisms of an inverse system of abelian groups (Ai, fij) are stationary, that is, for every k there exists jk such that for all ij : one says that the system satisfies the Mittag-Leffler condition.

The name "Mittag-Leffler" for this condition was given by Bourbaki in their chapter on uniform structures for a similar result about inverse limits of complete Hausdorff uniform spaces. Mittag-Leffler used a similar argument in the proof of Mittag-Leffler's theorem.

The following situations are examples where the Mittag-Leffler condition is satisfied:

  • a system in which the morphisms fij are surjective
  • a system of finite-dimensional vector spaces or finite abelian groups or modules of finite length or Artinian modules.

An example where is non-zero is obtained by taking I to be the non-negative integers, letting Ai = piZ, Bi = Z, and Ci = Bi / Ai = Z/piZ. Then

where Zp denotes the p-adic integers.

Further results

More generally, if C is an arbitrary abelian category that has enough injectives, then so does CI, and the right derived functors of the inverse limit functor can thus be defined. The nth right derived functor is denoted

In the case where C satisfies Grothendieck's axiom (AB4*), Jan-Erik Roos generalized the functor lim1 on AbI to series of functors limn such that

It was thought for almost 40 years that Roos had proved (in Sur les foncteurs dérivés de lim. Applications. ) that lim1 Ai = 0 for (Ai, fij) an inverse system with surjective transition morphisms and I the set of non-negative integers (such inverse systems are often called "Mittag-Leffler sequences"). However, in 2002, Amnon Neeman and Pierre Deligne constructed an example of such a system in a category satisfying (AB4) (in addition to (AB4*)) with lim1 Ai ≠ 0. Roos has since shown (in "Derived functors of inverse limits revisited") that his result is correct if C has a set of generators (in addition to satisfying (AB3) and (AB4*)).

Barry Mitchell has shown (in "The cohomological dimension of a directed set") that if I has cardinality (the dth infinite cardinal), then Rnlim is zero for all nd + 2. This applies to the I-indexed diagrams in the category of R-modules, with R a commutative ring; it is not necessarily true in an arbitrary abelian category (see Roos' "Derived functors of inverse limits revisited" for examples of abelian categories in which limn, on diagrams indexed by a countable set, is nonzero for n > 1).

Related concepts and generalizations

The categorical dual of an inverse limit is a direct limit (or inductive limit). More general concepts are the limits and colimits of category theory. The terminology is somewhat confusing: inverse limits are a class of limits, while direct limits are a class of colimits.

See also

  • Direct, or inductive limit
  • Protorus

Notes

1. ^John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. {{ISBN|978-0-387-09780-0}}.

References

  • {{citation|first=Nicolas|last=Bourbaki|authorlink=Nicolas Bourbaki|title=Algebra I|publisher=Springer|year=1989|isbn=978-3-540-64243-5|oclc=40551484}}
  • {{citation|first=Nicolas|last=Bourbaki|authorlink=Nicolas Bourbaki|title=General topology: Chapters 1-4|publisher=Springer|year=1989|isbn=978-3-540-64241-1|oclc=40551485}}
  • {{citation|first=Saunders |last=Mac Lane |authorlink=Saunders Mac Lane|title=Categories for the Working Mathematician | edition=2nd |date=September 1998 |publisher=Springer|isbn=0-387-98403-8}}
  • {{Citation | last=Mitchell | first=Barry | author-link=Barry Mitchell (mathematician) | title=Rings with several objects | journal=Advances in Mathematics | mr=0294454 | year=1972 | volume=8 | pages=1–161 | doi=10.1016/0001-8708(72)90002-3}}
  • {{Citation | last=Neeman | first=Amnon | author-link=Amnon Neeman | title=A counterexample to a 1961 "theorem" in homological algebra (with appendix by Pierre Deligne) | journal=Inventiones Mathematicae | mr=1906154 | year=2002 | volume=148 | issue=2 | pages=397–420 | doi=10.1007/s002220100197}}
  • {{Citation | last=Roos | first=Jan-Erik | author-link=Jan-Erik Roos | title=Sur les foncteurs dérivés de lim. Applications | journal=C. R. Acad. Sci. Paris | mr=0132091 | year=1961 | volume=252 | pages=3702–3704}}
  • {{Citation | last=Roos | first=Jan-Erik | author-link=Jan-Erik Roos | title=Derived functors of inverse limits revisited | journal=J. London Math. Soc. |series=Series 2 | mr=2197371 | year=2006 | volume=73 | issue=1 | pages=65–83 | doi=10.1112/S0024610705022416}}
  • Section 3.5 of {{Weibel IHA}}
{{Category theory}}Limes (Kategorientheorie)

2 : Limits (category theory)|Abstract algebra

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 21:39:24